Ökologische Umweltbeobachtung 2

# Ökotoxikologische Charakterisierung von Abfall

 Verfahrensentwicklung für die Festlegung des Gefährlichkeitskriteriums "ökotoxisch (H14)"



Herausgegeben von der Landesanstalt für Umweltschutz Baden-Württemberg 1. Auflage

# **Impressum**

Herausgeber Landesanstalt für Umweltschutz Baden-Württemberg

76157 Karlsruhe · Postfach 210752

http://www.lfu.bwl.de

ISSN 0949-0477 (Bd. 2, 2004)

Bearbeitung und Landesanstalt für Umweltschutz Baden-Württemberg

**Redaktion** Abteilung 2 Ökologie, Boden- und Naturschutz

Referat 23 Biologische Umweltbeobachtung

Dr. K. Deventer, Dr. J. Zipperle

Literaturstudie R. Kostka-Rick: Ökotoxikologische Charakterisierung

von Abfällen

Feststoffanalytik von Abfällen: TÜV-Süddeutschland Durchführung von Pflanzentests: Fa. ÖkoTox, Stuttgart

**Druck** Grube & Speck, 76187 Karlsruhe

Umschlaggestaltung Jutta Ruloff · Diplom-Designerin, 76275 Ettlingen

Stephan May · Grafik-Design, 76227 Karlsruhe

**Umwelthinweis** gedruckt auf Recyclingpapier aus 100% Altpapier

Bezug über Verlagsauslieferung der LfU bei der JVA Mannheim,

Herzogenriedstr. 111, 68169 Mannheim, Telefax (0621) 39 82 22

Nachdruck – auch auszugweise – nur mit Zustimmung des Herausgebers unter Quellenangabe und Überlassung von Belegexemplaren gestattet.

Karlsruhe, April 2004

# **Danksagung**

Den Gewerbeaufsichtsämtern und Firmen für die freundliche Unterstützung und Bereitstellung der Abfallproben.

© LfU Inhaltsverzeichnis 5

# Inhaltsverzeichnis

| 1 Z | usar         | nmenfassung                                                                                                  | 7  |
|-----|--------------|--------------------------------------------------------------------------------------------------------------|----|
| 2 E | inlei        | tung                                                                                                         | 9  |
| 3 P | rinzi        | p von Biotests                                                                                               | 11 |
| 4 N | letho        | odisches Vorgehen                                                                                            | 13 |
| 4.1 | Pro          | benahme und Probenlagerung                                                                                   | 13 |
| 4.2 | Pro          | benvorbereitung                                                                                              | 13 |
| 4.3 | Aus          | wahl der biologischen Testverfahren                                                                          | 13 |
| 4.4 | Che          | mische Analytik                                                                                              | 15 |
| 4.5 | Abf          | allproben                                                                                                    | 15 |
| 5 E | rgeb         | nisse                                                                                                        | 18 |
| 5.1 |              | robung                                                                                                       |    |
| 5.2 | Pro          | benvorbereitung                                                                                              | 18 |
| 5.3 | Elua         | atherstellung                                                                                                | 18 |
| 5.4 | Biot         | estergebnisse                                                                                                | 19 |
| _   | .4.1<br>.4.2 | Eluat Festphase                                                                                              |    |
| 5.5 | Rep          | oroduzierbarkeit und Routinetauglichkeit der Biotestverfahren                                                |    |
| 5   | .5.1         | Untersuchungen des Eluates – aquatische Testverfahren                                                        |    |
| 5   | .5.2         | Untersuchungen der Originalprobe - Festphasentests                                                           |    |
| 5.6 | Klas         | ssifizierung                                                                                                 | 26 |
| 5.7 | Übe          | erwachungsbedürftigkeit der Abfälle anhand der Klassifizierung der Biotestergebnisse                         | 28 |
| 5.8 |              | gleich der Einstufung anhand der Toxizitätsklassen mit der Einstufung anhand der<br>äufigen Vollzugshinweise |    |
| 5   | .8.1         | Besonders überwachungsbedürftige Abfälle anhand der Einstufung ab Toxizitätsklasse 2                         | 28 |
| 5   | .8.2         | Besonders überwachungsbedürftige Abfälle anhand der Einstufung in die Toxizitätsklasse 3                     |    |
| 5.9 | Ver          | gleich der ökotoxikologischen und chemischen Charakterisierung der Abfälle                                   | 32 |
|     | .9.1<br>.9.2 | Abfallgruppenspezifische BeschreibungZusammenhang zwischen Toxizität und chemischen Parametern               |    |

| 6 Verfahrensvorschlag                                                                                                                 | 40 |
|---------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.1 Ableitung einer minimalen Testbatterie                                                                                            | 40 |
| 6.2 Limit-Test                                                                                                                        |    |
| 6.3 Untersuchungen des Eluates auf Gentoxizität mit dem umu-Test                                                                      | 43 |
| 6.4 Wirtschaftlichkeit                                                                                                                | 43 |
| 7 Empfehlungen                                                                                                                        | 45 |
| 7.1 Eluat-Untersuchung                                                                                                                | 45 |
| 7.2 Biologische Testverfahren                                                                                                         | 45 |
| 8 Literatur                                                                                                                           | 47 |
| 9 Anhang                                                                                                                              | 49 |
| Anhang I: Orientierungswerte der vorläufigen Vollzugshinweise des Ministeriums für Umwelt und Verkehr Baden-Württemberg, Oktober 2002 | 49 |
| Anhang II: Datenhlätter - Riologische Testergehnisse und chemische Analytik                                                           | 51 |

## 1 Zusammenfassung

Die EG-Richtlinie 91/689/EWG nennt 14 Kriterien zur Charakterisierung gefährlicher Abfälle. Für die Festlegung des für Abfall relevanten Kriteriums H14 (ökotoxisch) gibt es bislang keine auf das Substrat "Abfall" adaptierte Messverfahren bzw. entsprechende Vorgaben. Allerdings wird zukünftig für die Abschätzung der von bestimmten Abfallarten ausgehenden Umweltgefährdung dem Kriterium H14 eine herausragende Bedeutung beizumessen sein.

Zur Überbrückung der Zeitspanne zwischen in Kraft treten des Europäischen Abfallverzeichnisses am 1.1.2002 bis zur Verfügbarkeit brauchbarer Methoden zur Abfalluntersuchung durch Biotests hat das Ministerium für Umwelt und Verkehr Baden-Württemberg vorläufige Vollzugshinweise (Oktober 2002) veröffentlicht, mit der, in der Hauptsache gestützt auf chemische Analysen, die Ökotoxizität abgebildet werden sollte. Damit sollte eine Vollziehbarkeit der Abfallverzeichnisverordnung erreicht werden.

Mit diesem im Auftrag des Umwelt- und Verkehrsministeriums Baden-Württemberg durchgeführten Vorhaben wurde der Inhalt der vorläufigen Vollzugshinweise auf Plausibilität geprüft. Eine in diesem Zusammenhang durchgeführte Literaturstudie (Kostka-Rick 2002) dokumentiert den aktuellen Stand von Forschung und Entwicklung auf dem Gebiet der ökotoxikologischen Charakterisierung von Abfällen vor dem Hintergrund der Vollzugstauglichkeit insbesondere im Zuge der europäischen Normenentwicklung.

Zur ökotoxikologischen Charakterisierung gefährlicher Abfälle wurden standardisierte und bereits in anderen Bereichen erfolgreich eingesetzte Biotestverfahren verwendet. Neben der ökotoxikologischen Prüfung der Originalprobe und des Abfalleluates wurde auch eine umfangreiche chemische Analytik durchgeführt.

Die Verfahren wurden auf ihre Reproduzierbarkeit, Routinetauglichkeit und Aussagefähigkeit geprüft und Empfehlungen zur Umsetzung der EG-Richtlinie über gefährliche Abfälle 91/689/EWG, Kriterium H14, abgeleitet.

Die untersuchten und überwiegend als besonders überwachungsbedürftig eingeschätzten Abfallproben wiesen eine sehr große Spannbreite in der Toxizität von nicht toxisch bis stark toxisch auf, einzelne Proben waren auch gentoxisch. Die eingesetzten Verfahren aus dem aquatischen Bereich erwiesen sich als gut geeignet und sind für die ökotoxikologische Prüfung von Abfalleluaten zu empfehlen. Im Bereich der Verfahren zur Festphasenprüfung wurde die prinzipielle Eignung der Verfahren gezeigt, die Methodik muss jedoch noch an die Testung von Abfällen angepasst werden.

Für die Bewertung wurden die Biotestergebnisse in drei Klassen kategorisiert. Anhand der Toxizitätsklassen 1-3 wurden die Abfälle in besonders überwachungsbedürftig bzw. nicht besonders überwachungsbedürftig eingeteilt. Die anhand der Toxizitätsklassen vorgenommene Einstufung der Abfälle in besonders überwachungsbedürftig oder nicht deckte sich erwartungsgemäß nicht

für alle Proben mit der Einstufung nach den vorläufigen Vollzugshinweisen des Landes. Das Kriterium H14 – ökotoxisch - wird nur mit ökotoxikologischen Testverfahren sinnfällig abgebildet, da komplexe Proben in der Regel mehr als einen Schadstoff enthalten.

Basierend auf der vorliegenden Untersuchung von 24 Abfallarten aus verschiedenen industriellen Bereichen mit 6 verschiedenen Biotestverfahren wird eine minimale Testbatterie, bestehend aus einem aquatischen Testverfahren, dem Algentest, und zwei Verfahren zur Festphasenprüfung, dem Pflanzentest und dem Bakterienkontakttest, vorgeschlagen.

Die Einführung eines Limittests statt der aufwendigeren G-Wert-Bestimmung mittels Verdünnungsreihe bewirkte eine weitere Reduzierung des Testumfangs und damit der Analysekosten. Mit der in dieser Studie beschriebenen Vorgehensweise wird das Kriterium H14 der EG-Richtlinie über gefährliche Abfälle 91/689/EWG sinnhaft und kostengünstig erfasst sowie eine nachvollziehbare Einstufung von Abfällen in die Kategorie besonders überwachungsbedürftig bzw. (nur) überwachungsbedürftig aufgrund ihrer ökotoxikologischen Wirkung ermöglicht.

# 2 Einleitung

In der EG-Richtlinie 91/689/EWG sind zur Beschreibung gefährlicher Abfälle 14 Kriterien - H1 bis H14 - genannt. Für die Festlegung des Kriteriums H14 (ökotoxisch) gibt es bislang keine auf das Substrat "Abfall" adaptierte Messverfahren und Grenzwertvorgaben. Im Anhang des Standards des Europäischen Komitees für Normung (CEN 2002) werden ökotoxikologische Testverfahren benannt, die für die Prüfung gefährlicher Abfälle geeignet erscheinen.

Das ökotoxikologische Gefährdungspotenzial von Abfall wird am ehesten durch biologische Testverfahren abgebildet. Auch in der Abwasserverordnung haben ökotoxikologische Testverfahren bei der Bewertung von bestimmten Abwasserarten einen wichtigen Stellenwert eingenommen. Dort sind für die Toxizität von Abwasser der chemischen Industrie (Anhang 22, WHG § 7) eindeutige Grenzwerte in Form von Verdünnungsstufen festgelegt.

Auf nationaler und/oder internationaler Ebene existieren für eine Reihe von biologischen Testverfahren standardisierte Testprotokolle, die reproduzierbare Ergebnisse gewährleisten. Weitere Biotests befinden sich gegenwärtig in nationalen bzw. internationalen Normungsverfahren.

An für behördliche Zwecke eingesetzte biologische Testverfahren müssen Anforderungen wie Standardisierung (DIN, CEN, ISO), Routinetauglichkeit, Wirtschaftlichkeit und Reproduzierbarkeit gestellt werden. Eine aussagekräftige öko-

toxikologische Testbatterie sollte aus Testorganismen unterschiedlicher Trophieebenen (Destruenten, Produzenten, Konsumenten) bestehen und die Endpunkte akute und chronische Toxizität erfassen.

Die im Rahmen dieses Vorhabens durchgeführte Literaturstudie fasst den aktuellen Stand in der Forschung und Anwendung von ökotoxikologischen Testverfahren zur Beurteilung der Abfalltoxizität zusammen (Kostka-Rick 2002). Während eine direkte, am festen Abfall orientierte ökotoxikologische Charakterisierung mit terrestrischen Biotests erst in wenigen Fällen durchgeführt wurde, ist der Einsatz aquatischer Biotestverfahren zur Bewertung von Abfalleluaten oder Deponiesickerwässern weit verbreitet. Angesichts einer großen Methodenvielfalt ist eine standardisierte Vorgehensweise bei der Gewinnung von Abfalleluaten eine wesentliche Voraussetzung für eine einheitliche ökotoxikologische Bewertung von Abfällen sowohl auf der Basis chemisch-analytischer wie auch biologischer Methoden.

Neben einem deutlichen Schwergewicht aquatischer im Vergleich zu terrestrischen Biotestverfahren wurden erhebliche Unterschiede in der Handhabung z.B. von Abfalleluaten beim Einsatz in Biotests gefunden. Hierin, wie auch bei der Optimierung und Festlegung von geeigneten, d.h. ökotoxikologisch aussagekräftigen und auch unter ökonomischen Gesichtspunkten vertretbaren Testbatterien, ist noch Klärungsbedarf vor einer Normensetzung erkennbar.

Zahlreiche aktuelle Entwicklungen, einerseits auf dem Gebiet terrestrischer Biotestverfahren, die vorrangig dem Bereich belasteter Böden und Sedimente entstammen, sowie bei der Miniaturisierung und Rationalisierung verschiedener Standardtestsysteme unter Einhaltung der Validierungskriterien versprechen künftig für viele bewertungsrelevante Verfahren eine rationelle und damit wirtschaftliche Anwendung im Routinebetrieb.

Da insgesamt mit ökotoxikologischen Verfahren zur Beurteilung des Gefährdungspotenzials von Abfällen wenig Erfahrung besteht, wurden in diesem Vorhaben standardisierte und bereits in anderen Bereichen (z. B. Abwasser) erfolgreich eingesetzte Biotestverfahren an ausgewählten Abfallarten erprobt. Des Weiteren kamen zwei

terrestrische Testsysteme zum Einsatz, die bisher noch kaum oder gar nicht für die Bestimmung der Ökotoxizität von Abfällen eingesetzt wurden. Alle Proben wurden auch chemisch analysiert, sowohl der Feststoff als auch das Eluat. Die Abfallproben wurden mit freundlicher Unterstützung der Gewerbeaufsichtsämter und der beteiligten Abfallerzeuger gezogen. Die Einstufung in besonders überwachungsbedürftige Abfälle anhand der ökotoxikologischen Charakterisierung wird mit der Einstufung anhand der vorläufigen Vollzugshinweise des Landes Baden-Württemberg verglichen. Ein Verfahrensvorschlag zur Umsetzung des Kriteriums H14 wird vorgestellt.

# 3 Prinzip von Biotests

Die Abfallproben bzw. die Abfalleluate werden in mehreren Verdünnungsschritten auf ihre Toxizität im jeweiligen Testsytem geprüft (Tabelle 1). Dabei wird die Probe solange verdünnt, bis keine Toxizität mehr nachweisbar ist.

#### Wirkschwelle

Für jedes biologische Testsystem ist eine testspezifische Wirkschwelle festgelegt, ab der eine Wirkung als Toxizität bewertet wird. Das bedeutet, dass z.B. im Leuchtbakterientest die Leuchtintensität um mindestens 20 % abgenommen haben muss, bevor diese Wirkung als Toxizität bewertet wird. Liegt die Abnahme der Leuchtintensität unter 20 %, so wird diese Wirkung nicht als toxische Wirkung bezeichnet. Für den Daphnientest liegt die Wirkschwelle bei 10 % Wirkung, für den Algentest, den Leuchtbakterientest, den Bakterienkontakttest und den Pflanzentest liegt die Wirkschwelle bei 20 % Wirkung.

#### Verdünnungsstufen

Die Abfalleluate werden mit Verdünnungswasser verdünnt, die Feststoffproben werden im Fest-phasentest mit dem entsprechenden Kontrollmedium (z.B. Sand oder Standardboden) verdünnt.

| Verdünnung | Verdünnungs- | Mischungsverhältnis | Probenanteil im | Verdünnungsanteil im  |
|------------|--------------|---------------------|-----------------|-----------------------|
|            | stufe G      | Probe + Verdünnung  | Testansatz [%]  | Testansatz [Anteil %] |
| 1:1        | 1            | 1+0                 | 100             | 0                     |
| 1:2        | 2            | 1+1                 | 50              | 50                    |
| 1:3        | 3            | 1+2                 | 33,3            | 66,7                  |
| 1:4        | 4            | 1+3                 | 25              | 75                    |
| 1:6        | 6            | 1+5                 | 16,7            | 83,3                  |
| 1:8        | 8            | 1+7                 | 12,5            | 87,50                 |
| 1:12       | 12           | 1+11                | 8,3             | 91,7                  |

Tab. 1: Verdünnungsstufen im Biotest und G-Werte.

Es wird die Verdünnungsstufe der Probe (G-Wert) ermittelt, die im Testsystem keine Toxizität mehr bewirkt (Abbildung 1). Ein G-Wert von 6 im Daphnientest bedeutet, dass die Probe mit einer Verdünnung von 1:6 auf einen Probenanteil von 16,7 % (83,3 %-Verdünnungswasseranteil) verdünnt ist und keine Toxizität oberhalb der Wirkschwelle von 10 % anzeigt.

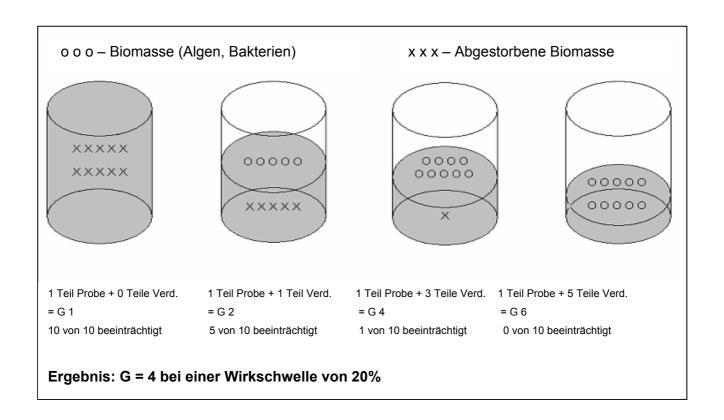



Abb. 1: Prinzip der Durchführung eines Biotests.

In den Datenblättern (Anhang) sind zusätzlich die EC-Werte angegeben. Der EC-Wert ist im Gegensatz zum G-Wert eine aus den Verdünnungsstufen und der erzielten Wirkung im Biotest ermittelte, rechnerische Größe (z. B. durch Probitanalyse). Der EC-Wert steht für "effect

concentration", er beschreibt die Konzentration der Probe (= Probenanteil in %), die eine bestimmte Wirkung im Test erzielt. So erzielt z.B. eine Probe mit einem  $EC_{20} = 25$  % eine 20 %ige Wirkung bei einem Probenanteil von 25 %.

# 4 Methodisches Vorgehen

# 4.1 Probenahme und Probenlagerung

Die Abfälle wurden stichprobenartig bei den abfallerzeugenden Firmen beprobt. Sie wurden bei –20°C bis zur Testung zwischengelagert. Insgesamt wurden 24 Abfallproben untersucht.

### 4.2 Probenvorbereitung

Die Abfallproben wurden homogenisiert und für die Untersuchungen entsprechende Teilmengen entnommen. Die Proben wurden gemörsert und ohne weitere Probenvorbereitung für die Durchführung der Festphasentests (Bakterienkontakttest und Pflanzentest) verwendet. Die Proben wurden für die Festphasenprüfung ab Verdünnungsstufe 2 getestet. Als Verdünnungsmedium wurde für den Bakterienkontakttest Quarzsand eingesetzt, für den Pflanzentest ein Standardboden.

# Eluatherstellung in Anlehnung an DIN 38414 S4

Zur Herstellung von wässrigem Eluat wurden 1 Teil Abfall entsprechend 100 g Trockengewicht und 1 Liter Wasser (deion.) in einer 2000 ml-Glasflasche (Schott) suspendiert. Die Suspension wurde bei Raumtemperatur mit einem Überkopfschüttler für 24 h mit 10 Upm rotiert. Feinpartikel wurden durch Zentrifugation mit 11.000 g bei 20°C über 20 min und zusätzlich durch Filtration (0,45 µm) abgetrennt. Das Eluat wurde bis zur Testung, jedoch nicht länger als 14 Tage, bei 4°C im Dunkeln gelagert.

# 4.3 Auswahl der biologischen Testverfahren

Alle Abfallproben wurden im wässrigen Eluat mit DIN-genormten Testverfahren, dem Algentest, miniaturisiert, dem Leuchtbakterientest, dem umu-Test und dem Daphnientest (DIN 38412-33, EN ISO 11348-34, DIN 38415-3, DIN 38412-30) untersucht.

Hinzu kam die Erprobung von zwei terrestrischen Testverfahren, die bisher kaum bzw. noch nicht für die Prüfung der Abfalltoxizität eingesetzt wurden, der Pflanzentest nach OECD 208A und der Bakterienkontakttest nach DIN 38412-48. Der Pflanzentest nach OECD 208A ist eine standardisierte Methode, die bisher v. a. zur Charakterisierung von Böden und Altlasten eingesetzt wurde.

Mit dem Bakterienkontakttest wurden bisher vor allem in der Sedimentprüfung in Bezug auf Reproduzierbarkeit und Sensitivität gute Erfahrungen gemacht (Gratzer und Ahlf 1999).

Alle Testverfahren außer dem Bakterienkontakttest sind auch im Anhang B des Europäischen Standards des europäischen Komitees für Normung (CEN 2002) als mögliche Verfahren zur Charakterisierung der Ökotoxizität von Abfällen genannt.

Andere Testverfahren, die für die Prüfung von Böden und Altlasten entwickelt wurden, sind aus Tierschutzgründen oder zu langer Testdauer nicht geeignet (Regenwurmtest, Fischtest). Der Chironomidentest (OECD Draft Document 218) wurde nicht in das Untersuchungsprogramm mit aufgenommen, da er, wie Erfahrungen an der

LfU gezeigt haben, noch nicht ausreichend reproduzierbar ist.

Auf die Durchführung eines Festphasentests mit Leuchtbakterien wurde verzichtet, da die Möglichkeit einer Adsorption der Leuchtbakterien an die Feststoffpartikel und damit eine Beeinflussung des Testergebnisses besteht. Aus diesem Grunde wurde der Bakterienkontakttest mit Arthrobacter globiformis als weiterer Festphasentest ausgewählt, da bei diesem Messverfahren die Toxizität über einen Substratumsatz im Medium bestimmt wird und damit eine Adsorption der Testbakterien an die Feststoffpartikel keinen Einfluss auf das Testergebnis hat.

#### Algentest in Anlehnung an DIN 38412-33

Beim Algentest wird die chronisch toxische Wirkung von wässrigem Testgut auf die Biomasseproduktion der Algen bestimmt. Als Maß für die Algenbiomasse gilt die Chlorophyll-Fluoreszenz. Testalge ist die in Kultur meist einzellige Grünalge Scenedesmus subspicatus CHODAT stellvertretend für Primärproduzenten im Plankton. Der Algentest wurde modifiziert und so weit miniaturisiert, dass er auf einer Mikroplatte mit 24 Vertiefungen (Testvolumen 2 ml) durchgeführt werden kann.

#### Daphnientest DIN 38412-30

Der zu den Blattfusskrebsen (Pyhllopoda) gehörende Testorganismus *Daphnia magna* STRAUS ist ein Teil des Zooplanktons stehender Gewässer. Als Filtrierer von partikulärer organischer Substanz steht diese Art in ihrer ökologischen Funktion als Konsument niederer Ordnung zwischen den Destruenten (z. B. Bakterien) und den Primärproduzenten (Algen) einerseits und

den Konsumenten höherer Ordnung (z. B. Fischen) andererseits.

Beim Daphnientest wird die akut toxische Wirkung von wässrigem Testgut auf *Daphnia magna* STRAUS nach 48 h Testdauer bestimmt.

#### Leuchtbakterientest EN ISO 11348-2

Beim Leuchtbakterientest wird die Hemmwirkung von wässrigem Testgut auf die Lichtemission des Bakteriums *Vibrio fischeri* bestimmt. Es steht stellvertretend für die Gruppe der Destruenten.

#### umu-Test DIN 38415-3

Mit dem umu-Test wird das gentoxische Wirkpotenzial einer Umweltprobe erfasst. Der gentechnisch veränderte Testorganismus Salmonella typhimurium TA1535/pSK1002 wird unter festgelegten Bedingungen in verschiedenen Konzentrationen des Testguts exponiert. Dabei induzieren Gentoxine durch DNA-Schädigung das an der DNA-Reparatur des Testorganismus beteiligte umuC-Gen. Die Induktion des Gens wird mit Hilfe des Reportergens lacZ über die Aktivität der ß Galaktosidase nachgewiesen. Die Induktionsrate des umuC-Gens ist das Maß für das erbgutverändernde Potenzial des Testguts. Die Wirkung von metabolisch aktivierbaren Substanzen wurde durch Zugabe von S9 (Enzympräparat aus Rattenleber) erfasst.

#### Bakterienkontakttest DIN 38412-48

Der ursprünglich für die Sedimentuntersuchung entwickelte Test erlaubt eine direkte ökotoxikologische Prüfung eines kontaminierten Feststoffes durch die Bestimmung einer Enzymaktivität (Dehydrogenase-Aktivität) von *Arthrobacter glo*-

biformis. Der Test ermöglicht die Wirkungsabschätzung gebundener Schadstoffe in festen Umweltproben. Die Bakterien werden direkt mit dem Feststoff inkubiert, der Farbstoff Resazurin wird in Anwesenheit des Bakterienenzyms Dehydrogenase zu Resorufin umgesetzt, dessen Gehalt photometrisch bestimmt wird. Ergebnisse werden innerhalb eines Versuchstages erhalten. Für die Bestimmung des G-Wertes werden die Proben in unterschiedlichen Konzentrationsanteilen mit dem Kontrollfeststoff (Quarzsand) gemischt. Getestet wird ab einer Probenkonzentration von 50 %. Es wird der G<sub>10</sub>- und G<sub>100</sub>-Wert bestimmt um eine Einstufung in die Toxizitätsklassen vornehmen zu können.

#### Pflanzentest in Anlehnung an OECD 208A

Untersucht wird die Wirkung von Feststoffproben auf terrestrische Pflanzen in Bezug auf die Keimungsrate, das Sprosslängenwachstum und das Trockengewicht. Die Expositionszeit beträgt 14-21 Tage. Untersucht werden zwei dikotyle Arten, Brassica oleracea (Blumenkohl) und Lycopersicum esculentum (Tomate), und eine monokotyle Art Avena sativa (Hafer). Für die Bestimmung des G-Wertes werden die Abfallproben in unterschiedlichen Konzentrationsanteilen mit einem Kontrollboden (Standardboden der LUFA Speyer) gemischt. Getestet wird ab einer Probenkonzentration von 50 %.

### 4.4 Chemische Analytik

Alle Abfallproben wurden in Anlehnung an die TA Siedlungsabfall auf die unten genannten Parameter untersucht. Die Ergebnisse sind in den Datenblättern im Anhang aufgelistet.

#### Feststoff-Analytik

Arsen, Blei, Cadmium, Chrom, Kobalt, Kupfer, Nickel, Quecksilber, Zink, AOX, Kohlenwasserstoffe, lipophile Stoffe, TOC, Benzol, Toluol, Ethylbenzol, Xylol, Summe BTEX, Summe PAK (16 EPA - Environmental Protection Agency) und der wasserlösliche Anteil.

#### **Eluat-Analytik**

Die für die Durchführung der aquatischen Biotests hergestellten Eluate wurden auf folgende Schadstoffgehalte untersucht:

Arsen, Blei, Cadmium, Chrom, Kupfer, Nickel, Quecksilber, Zink, Mangan, AOX, DOC, NH4+, Summe PAK (16 EPA), PCB, BTEX und CKW. An ausgewählten Proben wurde zusätzlich Chrom-(VI) und langkettige KW bestimmt.

#### Physikalisch-chemische Parameter

In den Eluaten wurden der pH-Wert, der Sauerstoff-Gehalt und die elektrische Leitfähigkeit bestimmt. Für die Durchführung der biologischen Testverfahren wurden der pH-Wert und der Sauerstoff-Gehalt bei Bedarf auf den für die Testverfahren erforderlichen Wert eingestellt. Kam es hierbei zu Veränderungen des Eluates, wie z.B. Ausfällungen oder Ausbildung eines Zweiphasenystems, so wurden diese abgetrennt.

### 4.5 Abfallproben

Die Abfallproben wurden direkt bei den industriellen Abfallerzeuger beprobt (Tab. 2). Die Proben wurden bei -20°C gelagert.

| Abfall-<br>schlüssel | Probe-<br>Nummer | Abfallart                                                                                                                                                        | Beprobung  |
|----------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                      | 06 05 Sc         | hlämme aus der betriebseigenen Abwasserbehandlur                                                                                                                 | ng         |
| 060503               | 26               | Schlämme aus der betriebseigenen Abwasserbehand-<br>lung mit Ausnahme derjenigen, die                                                                            | 27.06.2002 |
| 08 01                | Abfälle aus      | S HZVA (Herstellung, Zubereitung, Vertrieb und Anwen<br>Entfernung von Farben und Lacken                                                                         | idung) und |
| 080111*              | 27               | Farb- und Lackabfälle, die organische Lösemittel oder andere gefährliche Stoffe enthalten                                                                        | 27.06.2002 |
| 080113*              | 8                | Farb- und Lackschlämme, die organische Lösemittel oder andere gefährliche Stoffe enthalten                                                                       | 27.06.2002 |
| 080113*              | 4                | Farb- und Lackschlämme, die organische Lösemittel oder andere gefährliche Stoffe enthalten                                                                       | 21.06.2002 |
| 080115*              | 12               | wässrige Schlämme, die Farben oder Lacke mit organi-<br>schen Lösemitteln oder anderen gefährlichen Stoffen<br>enthalten                                         | 12.09.2002 |
| 080115*              | 19               | wässrige Schlämme, die Farben oder Lacke mit organischen Lösemitteln oder andere gefährliche Stoffe enthalten                                                    | 21.10.2002 |
| 080115*              | 1                | wässrige Schlämme, die Farben oder Lacke mit organi-<br>schen Lösemitteln oder anderen gefährlichen Stoffen<br>enthalten                                         | 27.06.2002 |
| 080116               | 3                | wässrige Schlämme, die Farben oder Lacke enthalten, mit Ausnahme derjenigen, die                                                                                 | 21.06.2002 |
| 080116               | 13               | wässrige Schlämme, die Farben oder Lacke enthalten,<br>mit Ausnahme derjenigen, die                                                                              | 12.09.2002 |
|                      | 10               | 10 Abfälle vom Gießen von Nichteisenmetallen                                                                                                                     |            |
| 101008               | 6                | Gießformen und Sande nach dem Gießen mit Aus-<br>nahme derjenigen, die, Formsand                                                                                 | 11.07.2002 |
| 101008               | 9                | Gießformen und Sande nach dem Gießen mit Aus-<br>nahme derjenigen, die, Kernsand                                                                                 | 11.07.2002 |
|                      | llen und ar      | der chemischen Oberflächenbearbeitung und Beschi<br>nderen Werkstoffen (z.B. Galvanik, Verzinkung, Beizei<br>sphatieren, alkalisches Entfetten und Anodisierung) |            |
| 110109*              | 2                | Schlämme und Filterkuchen aus der Oberflächenbearbeitung, die gefährliche Stoffe enthalten, Galvanik                                                             | 16.05.2002 |
| 110109*              | 30               | Schlämme und Filterkuchen aus der Oberflächenbearbeitung, die gefährliche Stoffe enthalten, Galvanik                                                             | 27.01.2003 |
| 110110               | 28/B             | Schlämme und Filterkuchen, mit Ausnahme derjenigen, die                                                                                                          | 16.10.2002 |
| 110110               | 17/A             | Schlämme und Filterkuchen, mit Ausnahme derjenigen, die                                                                                                          | 16.10.2002 |

|                          |            | rozessen der mechanischen Formgebung sowie der p<br>chen Oberflächenbearbeitung von Metallen und Kuns       |             |
|--------------------------|------------|-------------------------------------------------------------------------------------------------------------|-------------|
| 120114*                  | 14         | Bearbeitungsschlämme, die gefährliche Stoffe enthalten                                                      | 12.09.2002  |
| 120114*                  | 7          | Bearbeitungsschlämme, die gefährliche Stoffe enthalten                                                      | 27.06.2002  |
| 120116*                  | 16         | Strahlmittelabfälle, die gefährliche Stoffe enthalten                                                       | 10.10.2002  |
| 120116*<br>und<br>120117 | 21         | Strahlmittelabfälle, die gefährliche Stoffe enthalten und Strahlmittelabfälle, mit Ausnahme derjenigen, die | 16.10.2002  |
|                          | 19 01 A    | Abfälle aus der Verbrennung oder Pyrolyse von Abfäller                                                      | 1           |
| 190107*                  | 23         | feste Abfälle aus der Abgasbehandlung                                                                       | 15.10.2002  |
| 190112                   | 22         | Rost- und Kesselaschen, sowie Schlacken mit Aus-<br>nahme derjenigen, die                                   | 17.10.2002  |
| 190113                   | 24         | Filterstaub aus der Verbrennung oder Pyrolyse von<br>Abfällen                                               | 17.10.2002  |
| 19 08 A                  | bfälle aus | Abwasserbehandlungsanlagen a. n. g. (anderswo nic                                                           | ht genannt) |
| 190813*                  | 18         | Schlämme, die gefährliche Stoffe aus einer anderen<br>Behandlung von industriellem Abwasser enthalten       | 17.10.2002  |
|                          | 19 10      | Abfälle aus dem Shreddern von metallhaltigen Abfällen                                                       |             |
| 191004                   | 11         | Schredderleichtfraktionen und Staub mit Ausnahme derjenigen, die                                            | 21.05.2002  |

Tab. 2: untersuchte Abfallarten, \* - Markierung: gefährlicher Abfall im Sinne der Richtlinie 91/689/EWG – Fortsetzung.

# 5 Ergebnisse

### 5.1 Beprobung

Die Proben wurden stichprobenartig aus den Sammelgefäßen der verschiedenen Standorte direkt entnommen. Bei nicht homogenem Abfall wurde sowohl flüssiges als auch festes Material beprobt, um so eine möglichst repräsentative Probe zu entnehmen. Acht der vierundzwanzig Abfallproben waren Farb- und Lackabfälle aus der Automobilherstellung, vier Proben entstammten der Oberflächenbearbeitung, zwei Abfallproben waren Gießformen bzw. Sande aus einer Aluminium-Gießerei, drei Abfallproben von Rauchgasbehandlungsrückständen bzw. Schlacken aus einer Müllverbrennungsanlage, je zwei Abfallproben waren Bearbeitungsschlämme, Strahlmittelabfälle und Schlämme aus einer Abwasserbehandlung Schredderund eine leichtfraktion. Letztere stammte aus einer Schredderanlage zur mechanischen Aufbereitung von Altautos und Konsumgüterschrott (Herd, Kühlschrank). Alle Proben wurden fotodokumentiert (siehe Anhang II).

#### 5.2 Probenvorbereitung

In der Regel waren die untersuchten Abfallproben gut zu verarbeiten, zumeist waren sie in der Konsistenz pastös bis fest und konnten gut zerkleinert werden. Nur bei wenigen Proben traten Schwierigkeiten bei der Probenvorbereitung auf. Einige Farb- und Lackschlämme und Bearbei-

tungsschlämme waren z. T. stark lösemittelhaltig.

Besonders die Farb- und Lackschlämme wiesen z. T. eine Trennung in zwei Phasen (fest und flüssig) auf, die durch eine erneute Homogenisierung aufgehoben wurde.

Bei der Probe Nr. 11 (Schredderleichtfraktion - Styropor, Kunststoff) und Probe 22 (Rost- und Kesselasche - Metallteile) wurden Partikel > 2 cm vor der Testdurchführung entfernt.

Der pH-Wert der Proben Nr. 22, 23 und 24 (Abfälle aus der Müllverbrennungsanlage) war stark alkalisch, der pH-Wert der Probe Nr. 30 (bleichromathaltige Probe aus der Oberflächenbearbeitung) war stark sauer und musste vor der Testdurchführung eingestellt werden.

Bei der Verdünnung der Probe 23 (Abfall aus der Rauchgasbehandlung) mit Wasser fand eine Erwärmung (ca. 40°C) des Probenansatzes statt.

Die Probe Nr. 1 war eine flüssige Farb- und Lackschlammprobe. Diese wurde wie ein Eluat behandelt und direkt untersucht.

### 5.3 Eluatherstellung

Eine Probe (Nr. 26, Schlamm aus einer betriebseigenen Abwasserbehandlung) war aufgrund des Anteils von Feinpartikeln mit dem

Membranfilter kaum zu filtrieren, sodass die Filtration mehrere Stunden dauerte.

Bei einer Probe (Nr. 27, Farb- und Lackabfall) löste sich der Membranfilter aufgrund eines hohen Lösemittelgehaltes der eluierten Probe auf. Hier wurde auf die Membranfiltration verzichtet und nur über Glasfaser filtriert. Bei dieser Probe bildete sich anschließend ein Zweiphasensystem mit einer wässrigen und einer lösemittelhaltigen Phase aus. Die lösemittelhaltige Phase wurde dekantiert, da im Biotest keine wasserunlöslichen Phasen untersucht werden können.

Bei der pH-Wert-Einstellung der Eluate (für die Biotests muss der pH-Wert im neutralen Bereich liegen) kam es teilweise zu Ausfällungen vermutlich von Schwermetallsalzen, diese wurden nach der pH-Wert-Einstellung nochmals abfiltriert (Probe Nr. 30, bleichromathaltiger Schlamm aus der Oberflächenbearbeitung, Probe Nr. 24, Flugstaub aus der Müllverbrennungsanlage).

# 5.4 Biotestergebnisse

Die erzielten Biotestergebnisse zeigten eine weite Spannbreite in der Toxizität der Proben von nicht toxisch bis stark toxisch mit einem G-Wert von bis zu 80.000. Die Biotestergebnisse sind in der Tabelle 3 zusammengefasst und in der Abbildung 2 (aquatische Testsysteme) und Abbildung 3 (Festphasentests) vergleichend dargestellt.

Die in der Abbildung 3 mit einem > - Zeichen markierten G-Werte bezeichnen Testergebnisse, die über dem angegebenen G-Wert liegen, aber nicht näher bestimmt wurden. Die Einzelergeb-

nisse der Biotestung und der chemischen Analyse können den Datenblättern im Anhang entnommen werden.

#### 5.4.1 Eluat

#### **Algentest**

Vier der 24 Abfalleluate waren im Algentest nicht toxisch. Die größte Toxizität zeigte die Probe Nr. 1 (flüssiger Farb- und Lackabfall, direkt getestet) mit einem G-Wert von 80.000 und die Probe Nr. 30 (bleichromathaltiger Schlamm aus der Oberflächenbearbeitung) mit einem G-Wert von 24.000.

#### **Daphnientest**

Drei der 24 Abfalleluate waren im Daphnientest nicht toxisch. Auch im Daphnientest wurde die größte Toxizität in der Probe Nr. 1 mit einem G-Wert von 20.000 und in der Probe Nr. 30 mit einem G-Wert von 50.000 nachgewiesen.

#### Leuchtbakterientest

Fünf der 24 Abfalleluate waren im Leuchtbakterientest nicht toxisch, die größte Toxizität wurde ebenfalls bei der Probe 1 mit einem G-Wert von 6.400 und der Probe Nr. 30 mit einem G-Wert von 2.500 bestimmt.

#### umu-Test

Mit dem *umu*-Test wurde im Eluat der Probe Nr. 27 (Farb- und Lackabfall), der Probe Nr. 1 (flüssiger Farb- und Lackabfall) und der Probe Nr. 30 (bleichromathaltiger Bearbeitungsschlamm) ein gentoxisches Wirkpotenzial festgestellt. Alle anderen Proben waren gentoxikologisch nicht auffällig.

#### 5.4.2 Festphase

#### Bakterienkontakttest

Im Bakterienkontakttest waren alle Proben bis auf die Probe Nr. 9 (Kernsand) toxisch. Eine Aussage über die größte angezeigte Toxizität kann nicht getroffen werden, da nur die Verdünnungsstufen 2, 10 und 100 untersucht wurden. Die Proben Nr. 1 (flüssiger Farb- und Lackschlamm), Nr. 8, Nr. 13, Nr. 19, Nr. 4 und Nr. 12 (Farb- und Lackschlamm), Probe Nr. 6 (Formsand), Probe Nr. 16 (Strahlmittelabfall) und Probe Nr. 24 (Filterstaub aus der Müllverbrennungsanlage) bewirkten in der 1:2-Verdünnung eine möglicherweise chemisch bedingte Entfärbung des Farbstoffs Resazurin, was zu einer Testungenauigkeit führen kann. Die Probe 26 (Schlamm aus einer betriebseigenen Abwasser-

behandlung) wies beim Ansetzen des Tests Klumpen- und Flockenbildung auf.

#### **Pflanzentest**

Die Probe Nr. 7 (Bearbeitungsschlamm) ergab im Pflanzentest kein eindeutiges Ergebnis, sodass kein G-Wert angegeben werden kann. Bis auf die Probe Nr. 6 (Formsand) wurde in allen Proben eine Pflanzentoxizität nachgewiesen. Die höchsten G-Werte zeigten die Probe Nr. 27 (Farb- und Lackabfall) mit einem G-Wert von 16.384, die Probe Nr. 30 (bleichromathaltiger Schlamm aus der Oberflächenbearbeitung) mit einem G-Wert von 65.536 und die Probe Nr. 23 (Abfall aus der Abgasbehandlung einer Müllverbrennungsanlage) mit einem G-Wert von 2.048.

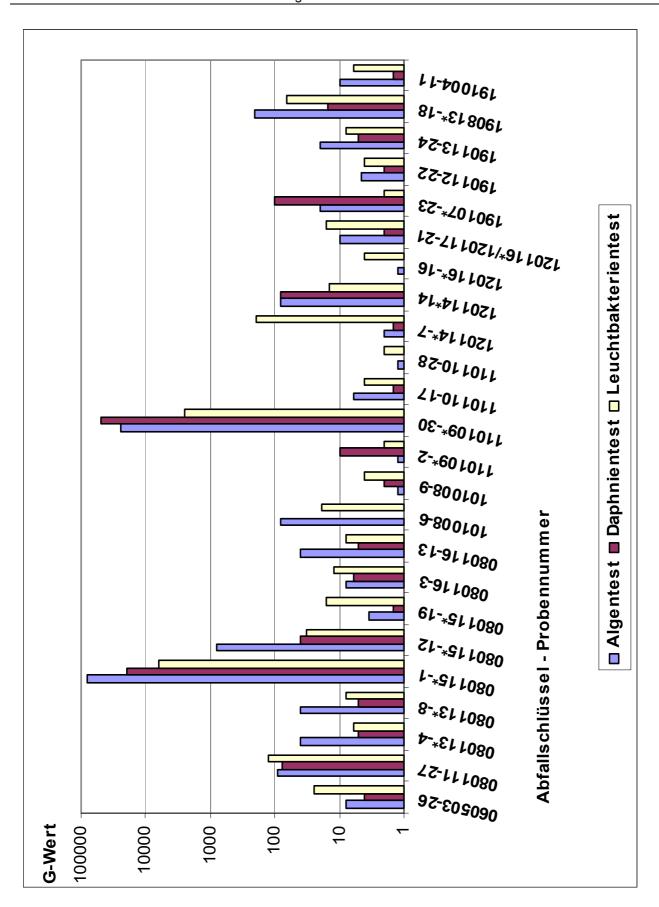



Abbildung 2: Vergleich der Toxizität der Abfallproben-Eluate in aquatischen Testsystemen.

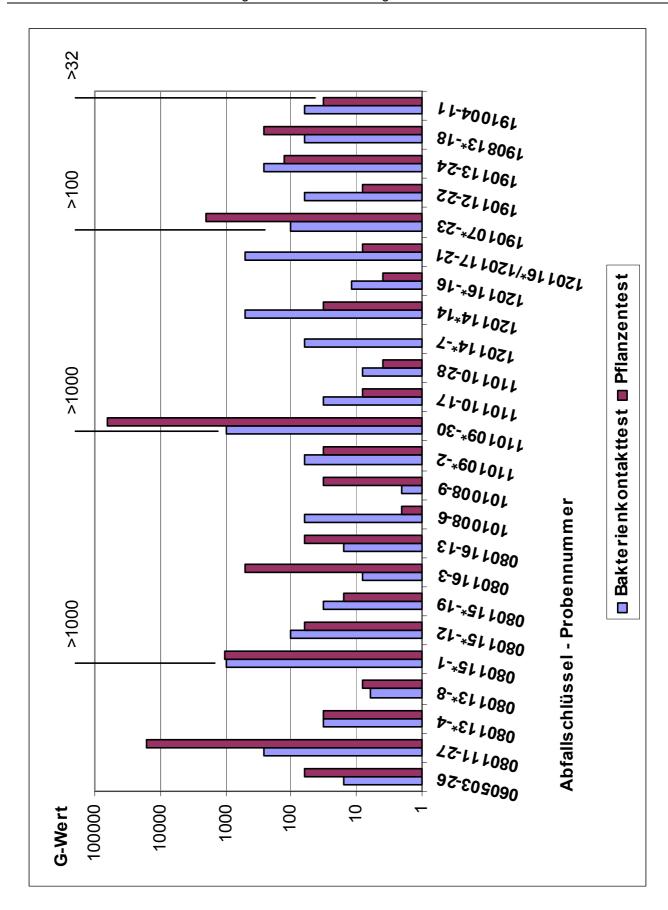



Abbildung 3: Vergleich der Toxizität der Abfallproben in terrestrischen Testsystemen; >32, >100, >1000 – G-Wert liegt über dem angegebenen G-Wert.

# 5.5 Reproduzierbarkeit und Routinetauglichkeit der Biotestverfahren

# 5.5.1 Untersuchungen des Eluates – aquatische Testverfahren

#### Algentest, Daphnientest,

#### Leuchtbakterientest, umu-Test

Die vier eingesetzten aquatischen Biotestverfahren zeigten innerhalb von 2 Wochen (inkl. Probenvorbereitung und Testwiederholung) eine gute Reproduzierbarkeit, i. d. R. wurde der G-Wert bestätigt oder schwankte selten um max. 2 Verdünnungsstufen. Die vier Testverfahren Algentest, Daphnientest, Leuchtbakterientest und umu-Test sind nach DIN genormt und waren für die Testung von Abfalleluaten gut einsetzbar. Nur die Probe 7 (Bearbeitungsschlamm aus Oberflächenbearbeitung, Abfallschlüssel der 120114\*) erwies sich im Algentest und Pflanzentest aufgrund von nicht reproduzierbaren Ergebnissen als schwer zu testende Probe.

# 5.5.2 Untersuchungen der Originalprobe - Festphasentests

#### **Pflanzentest**

Im Pflanzentest wurden die Abfälle mit 3 verschiedenen Pflanzenarten anhand der drei Wirkungskriterien Keimrate, Sprosslänge und Trockengewicht in zwei unabhängigen Versuchsansätzen untersucht und für jede Probe G-Werte bestimmt. Der Test dauert 14-21 Tage in Abhängigkeit von der Keimungszeit. Von den drei Wirkungskriterien ist die Keimrate der am we-

nigsten geeignete Parameter, da dieser nicht nur von den Probeninhaltsstoffen sondern auch von der Probenstruktur und der Wasserführungskapazität beeinflusst wird. Sprosslänge und Trockengewicht sind besser geeignete Kriterien als die Keimrate und in ihrer Aussagefähigkeit gleichwertig.

Der Pflanzentest wies Toxizitäten in vergleichbaren Konzentrationsbereichen nach wie die aquatischen Testverfahren, zeigte aber eine größere Schwankungsbreite der Testergebnisse. Da nur zwei Testdurchläufe möglich waren, konnte der G-Wert nicht in jedem Fall mit Wiederholung bestimmt werden. Die drei verschiedenen Pflanzenarten zeigten z. T. verschieden starke Toxizitäten an womit die Notwendigkeit einer Paralleltestung mit verschiedenen Pflanzenarten belegt ist. Aus den ermittelten G-Werten einer Abfallprobe wurde der repräsentativste G-Wert über alle drei Pflanzenarten und die beiden Wirkungskriterien Sprosslängenwachstum und Trockengewicht bestimmt. Der repräsentativste Wert ist der Wert, der am häufigsten ermittelt wurde. Die Ergebnisse wurden in der Auswertung unterschiedlich stark gewichtet, da der ab der zweiten Versuchsreihe eingesetzte Standardboden deutlich die Wasserversorgung verbesserte und bei der letzten Versuchsreihe es vermutlich zu einer Schädigung der Versuchspflanzen aufgrund kurzfristig erhöhter Versuchstemperaturen kam (siehe Kap. 7).

#### Bakterienkontakttest

Der Bakterienkontakttest erwies sich als schnell implementierbare und für die Prüfung der Abfalltoxizität gut einsetzbare Methodik. Die Inhaltsstoffe von Abfallproben können mit dem Farbstoff Resazurin interagieren, was zu einer geringen Ausgangskonzentration des Farbstoffes und damit zu einer Abnahme der Testgenauigkeit führte. Dieser Effekt wird jedoch über einen Blindwert (Probe und Farbstoff, ohne Inokulum) korrigiert. Liegt der pH-Wert der Probe unter 6, so kann dies ebenfalls zu einer Resazurin-

Reduzierung führen, was bei der Bewertung der Testergebnisse berücksichtigt wurde. Die erzielten Ergebnisse belegen die Reproduzierbarkeit des Testes. Der Bakterienkontakttest zeigte eine höhere Empfindlichkeit des Testsystems als die aquatischen Testverfahren und der Pflanzentest (siehe Kapitel 7).

| Probe-Nr. |        | Algentest | Daphnientest | ientest | Leuchtbal | Leuchtbakterientest | umu-Test                        | Bakterienkontakttest | ontakttest       | Pflanz | Pflanzentest |
|-----------|--------|-----------|--------------|---------|-----------|---------------------|---------------------------------|----------------------|------------------|--------|--------------|
|           | G-Wert | toxisch   | G-Wert       | toxisch | G-Wert    | toxisch             | gentoxisch<br>ohne S9/mit<br>S9 | G-Wert               | toxisch          | G-Wert | toxisch      |
| 26        | 8      | ja        | 4            | ja      | 24        | ъ́Г                 | nein                            | 10-100               | ja               | 64     | <u>'a</u>    |
| 27        | 06     | ja        | 75           | ja      | 128       | ja                  | ja/nein                         | >100                 | Б                | 16.384 | ja           |
| 4         | 40     | ja        | 5            | ja      | 9         | ja                  | nein                            | 10-100               | <u>'a</u>        | 32     | ja           |
| 80        | 40     | ja        | 2            | ja      | 64        | ğ                   | nein                            | 2-10                 | ' <u>a</u> '     | 80     | ъ́           |
| ~         | 80.000 | ja        | 20.000       | ja      | 6.400     | ja                  | nein/ja                         | >1.000               | ja               | 1.024  | ja           |
| 12        | 800    | ja        | 30           | ja      | 32        | ja                  | nein                            | 10-100               | ' <u>a</u> '     | 64     | ja           |
| 19        | 4      | ja        | 2            | ja      | 8         | <u>ja</u>           | nein                            | 2-10                 | ï                | 16     | ja           |
| 3         | 80     | ja        | 9            | ja      | 12        | ğ                   | nein                            | 2-10                 | ' <u>a</u> '     | 512    | ъ́           |
| 13        | 40     | ja        | 2            | ja      | 8         | ig                  | nein                            | 10-100               | ' <u>a'</u>      | 64     | іğ           |
| 9         | 80     | ja        | 1            | uein    | 16        | ja                  | nein                            | 10-100               | . <mark>Б</mark> | 7      | nein         |
| 6         | 1,25   | nein      | 2            | ьĺ      | 4         | ja                  | nein                            | 2                    | nein             | 8      | ja           |
| 2         | 1,25   | nein      | 10           | ьĺ      | 2         | nein                | nein                            | 10-100               | , <u>ja</u>      | 32     | ja           |
| 30        | 24.000 | ja        | 50.000       | ja      | 2.500     | ja                  | ja/ja                           | >100                 | ja               | 982.59 | ja           |
| 17        | 9      | ja        | 2            | ja      | 2         | nein                | nein                            | 10-100               | ja               | 8      | ja           |
| 28        | 1,25   | nein      | 1            | nein    | 2         | nein                | nein                            | 2-10                 | ja               | 4      | ja           |
| 2         | 2      | ja        | 2            | ьĺ      | 96        | ja                  | nein                            | 10-100               | ja               | .d.n   | n. b.        |
| 14        | 80     | ja        | >80          | þj      | 8         | ja                  | nein                            | >100                 | ja,              | 32     | ja           |
| 16        | 1,25   | nein      | 1            | nein    | 2         | nein                | nein                            | 2-10                 | ' <u>a</u> '     | 4      | ja           |
| 21        | 15     | ja        | 2            | ja      | 16        | ja                  | nein                            | >100                 | ja               | 8      | ja           |
| 23        | 15     | ja        | 20           | ja      | 2         | nein                | nein                            | >100                 | ja               | 2.048  | ja           |
| 22        | 5      | ja        | 2            | ja      | 4         | ja                  | nein                            | 10-100               | ja               | 8      | ja           |
| 24        | 20     | ja        | 5            | ja      | 9         | ja                  | nein                            | >100                 | ja               | 128    | ja           |
| 18        | 200    | ja        | 15           | ja      | 48        | ja                  | nein                            | 10-100               | ja               | 526    | ja           |
| 11        | 10     | ы́        | 2            | ja      | 16        | ja                  | nein                            | 10-100               | ja               | >32    | <u>.</u>     |

Tab. 3: Biotestergebnisse (n. b. - nicht bestimmbar).

### 5.6 Klassifizierung

Um die Daten einer Bewertung zugänglich zu machen, wurden die Biotestergebnisse klassifiziert und in drei Toxizitätsklassen eingeteilt: nicht bis mäßig toxisch – Klasse 1, toxisch – Klasse 2 und stark toxisch – Klasse 3 (Tabelle 4). Für die Einordnung in die Toxizitätsklassen

wurde der Biotest mit dem größten G-Wert herangezogen, z.B. zeigte Probe 1 im Algentest den größten G-Wert mit 80.000, damit ist diese Abfallprobe der Klasse 3 stark toxisch zuzuordnen. Werden gentoxische Effekte nachgewiesen, so ist die Abfallprobe immer in die Klasse 3 einzustufen.

| Toxizitäts-<br>klasse | Bewertung                  | Algentest, Daphnientest,<br>Leuchtbakterientest,<br>Pflanzentest,<br>Bakterienkontakttest | umu-Test         |
|-----------------------|----------------------------|-------------------------------------------------------------------------------------------|------------------|
|                       |                            | G-Wert                                                                                    | Wirkung          |
| 1                     | nicht bis mäßig<br>toxisch | 1-10                                                                                      | nicht gentoxisch |
| 2                     | toxisch                    | >10-100                                                                                   | -                |
| 3                     | stark toxisch              | >100                                                                                      | gentoxisch       |

Tab. 4: Klassifizierungsschema (Erläuterung im Text).

Von den 24 Abfallproben wurden 3 Proben, die Probe Nr. 9 (Kernsand), Nr. 28 (Schlamm und Filterkuchen aus der Oberflächenbearbeitung von Metallen) und Nr. 16 (Strahlmittelabfall) in die Toxizitätsklasse 1 - nicht bis mäßig toxisch - eingestuft. Der Toxizitätsklasse 2 – toxisch - wurden 11 Abfallproben zugeordnet, der Toxizitätsklasse 3 – stark toxisch - wurden 10 Abfallproben zugeordnet (Tabelle 5).

Die meisten Abfallproben waren in mehreren Testsystemen toxisch. Die Probe Nr. 19 (Farbund Lackabfall) war nur im Pflanzentest toxisch, die Probe Nr. 17 (Schlamm aus der Oberflächenbearbeitung) und Nr. 22 (Rost- und Kessel-

asche aus einer Müllverbrennungsanlage) waren nur im Bakterienkontakttest toxisch.

Eine Zuordnung in die Toxizitätsklasse 3 aufgrund von gentoxischen Effekten trifft auf drei Proben zu. Allerdings sind die Proben Nr. 1 (flüssiger Farb- und Lackschlamm), Nr. 27 (Farb- und Lackabfall) und Nr. 30 (bleichromathaltiger Schlamm aus der Oberflächenbearbeitung) auch aufgrund stark toxischer Effekte in allen drei aquatischen Testverfahren und in den beiden terrestrischen Testverfahren der Toxizitätsklasse 3 eingestuft.

Die geringste Testempfindlichkeit zeigte der Daphnientest. 16 der 24 Abfallproben wurden in

die Toxizitätsklasse 1 – nicht bis mäßig toxisch – eingestuft, 6 Proben in die Toxizitätsklasse 2 – toxisch und zwei Proben in die Toxizitätsklasse 3 – stark toxisch. Der Bakterienkontakttest wies

die größte Testempfindlichkeit auf, nur 6 der 24 Abfallproben sind in die Toxizitätsklasse 1 eingestuft (Tabelle 5).

| EAV               | Probe-<br>Nr. |                |                   | Toxizitätskl             | asse                           |                   | umu-<br>Test                       | Maximale<br>Toxizitäts-<br>Klasse |
|-------------------|---------------|----------------|-------------------|--------------------------|--------------------------------|-------------------|------------------------------------|-----------------------------------|
|                   |               | Algen-<br>test | Daph-<br>nientest | Leuchtbak-<br>terientest | Bakterien-<br>kontakt-<br>test | Pflanzen-<br>test | Gen-<br>toxisch<br>ohne/<br>mit S9 |                                   |
| 060503            | 26            | 1              | 1                 | 2                        | 2                              | 2                 | nein                               | 2                                 |
| 080111*           | 27            | 2              | 2                 | 3                        | 3                              | 3                 | ja/nein                            | 3                                 |
| 080113*           | 4             | 2              | 1                 | 1                        | 2                              | 2                 | nein                               | 2                                 |
| 080113*           | 8             | 2              | 1                 | 2                        | 1                              | 1                 | nein                               | 2                                 |
| 080115*           | 1             | 3              | 3                 | 3                        | 3                              | 3                 | nein/ja                            | 3                                 |
| 080115*           | 12            | 3              | 2                 | 2                        | 2                              | 2                 | nein                               | 3                                 |
| 080115*           | 19            | 1              | 1                 | 1                        | 1                              | 2                 | nein                               | 2                                 |
| 080116            | 3             | 1              | 1                 | 2                        | 1                              | 3                 | nein                               | 3                                 |
| 080116            | 13            | 2              | 1                 | 1                        | 2                              | 2                 | nein                               | 2                                 |
| 101008            | 6             | 2              | 1                 | 2                        | 2                              | 1                 | nein                               | 2                                 |
| 101008            | 9             | 1              | 1                 | 1                        | 1                              | 1                 | nein                               | 1                                 |
| 110109*           | 2             | 1              | 2                 | 1                        | 2                              | 2                 | nein                               | 2                                 |
| 110109*           | 30            | 3              | 3                 | 3                        | 3                              | 3                 | ja/ja                              | 3                                 |
| 110110            | 17            | 1              | 1                 | 1                        | 2                              | 1                 | nein                               | 2                                 |
| 110110            | 28            | 1              | 1                 | 1                        | 1                              | 1                 | nein                               | 1                                 |
| 120114*           | 7             | 1              | 1                 | 2                        | 2                              | n. b.             | nein                               | 2                                 |
| 120114*           | 14            | 2              | 2                 | 1                        | 3                              | 2                 | nein                               | 3                                 |
| 120116*           | 16            | 1              | 1                 | 1                        | 1                              | 1                 | nein                               | 1                                 |
| 120116*<br>120117 | 21            | 2              | 1                 | 2                        | 3                              | 1                 | nein                               | 3                                 |
| 190107*           | 23            | 2              | 2                 | 1                        | 3                              | 3                 | nein                               | 3                                 |
| 190112            | 22            | 1              | 1                 | 1                        | 2                              | 1                 | nein                               | 2                                 |
| 190113            | 24            | 2              | 1                 | 1                        | 3                              | 3                 | nein                               | 3                                 |
| 190813*           | 18            | 3              | 2                 | 2                        | 2                              | 3                 | nein                               | 3                                 |
| 191004            | 11            | 1              | 1                 | 2                        | 2                              | 2                 | nein                               | 2                                 |
| Anzahl To         |               | 11             | 16                | 12                       | 6                              | 8                 | 21                                 | 3                                 |
| Anzahl To         |               | 9              | 6                 | 9                        | 11                             | 8                 | -                                  | 11                                |
| Anzahl To         |               | 4              | 2                 | 3                        | 7                              | 7                 | 3                                  | 10                                |

Tab. 5: Klassifizierung der Testergebnisse.

# 5.7 Überwachungsbedürftigkeit der Abfälle anhand der Klassifizierung der Biotestergebnisse

Auf der Grundlage der Klassifizierung der Biotestergebnisse lässt sich nunmehr eine Konvention zur Einstufung in besonders überwachungsbedürftig oder nicht besonders überwachungsbedürftig diskutieren.

#### Klasse 1 - nicht bis mäßig toxisch

Ist der Abfall anhand der hier erzielten Biotestergebnisse in die Klasse 1 - nicht bis mäßig toxisch - eingestuft, so ist der Abfall nicht besonders überwachungsbedürftig.

#### Klasse 2 - toxisch

Es ist zu diskutieren, ob die Toxizitätsklasse zwei noch der Kategorie nicht besonders überwachungsbedürftig oder bereits der Kategorie besonders überwachungsbedürftig zuzuordnen ist (siehe Kapitel 5.8).

#### Klasse 3 - stark toxisch

Ist der Abfall in die Klasse 3 - stark toxisch - eingestuft, ist er besonders überwachungsbedürftig.

# 5.8 Vergleich der Einstufung anhand der Toxizitätsklassen mit der Einstufung anhand der vorläufigen Vollzugshinweise

In der Tabelle 6 wird die anhand der Biotestergebnisse erfolgte Klassifizierung der Abfälle mit den vorläufigen Vollzugshinweisen (VVZH, UVM 2002) verglichen. In der Tabelle 4 der VVZH sind für Feststoffgehalte abgeleitete Orientie-

rungswerte zur Unterscheidung zwischen besonders überwachungsbedürftigen und nicht besonders überwachungsbedürftigen Abfällen angegeben. Diese beruhen auf chemischen Analyseparametern. Neben Konzentrationsangaben für Einzelstoffe finden sich auch Summenwerte, in denen verschiedene Schwermetallgehalte aufsummiert werden zu einem zusammenfassenden Orientierungswert (Summe a, Summe b, Summe c). Abgeleitete Orientierungswerte für Eluate sind ebenfalls festgelegt (Anhang I).

### 5.8.1 Besonders überwachungsbedürftige Abfälle anhand der Einstufung ab Toxizitätsklasse 2

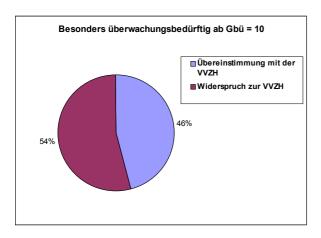
Wird Abfall ab der Toxizitätsklasse 2, also ab dem  $G_{b\ddot{u}}$ -Wert 10, als besonders überwachungsbedürftig eingestuft, so ergibt sich folgendes Bild:

Von den 24 Abfällen werden anhand der vorläufigen Vollzugshinweise 10 Abfälle als besonders überwachungsbedürftiger Abfall eingestuft. Anhand der Einstufung ab der Toxizitätsklasse 2 werden 21 Abfälle als besonders überwachungsbedürftiger Abfall eingestuft. Die Einstufung ab Toxizitätsklasse 2 in besonders überwachungsbedürftig oder nicht, stimmt für 11 der 24 Abfallproben (45,8 %) mit der Einstufung anhand der vorläufigen Vollzugshinweise überein (Abbildung 4).

12 Abfallproben werden ab Toxizitätsklasse 2 als besonders überwachungsbedürftig eingestuft, sind jedoch aufgrund der vorläufigen Vollzugshinweise nicht besonders überwachungs-

bedürftig. Dies gilt für sechs der acht untersuchten Farb- und Lackschlämme, die beiden Bearbeitungsschlämme, den Formsand aus der Alu-Gießerei, die Kesselasche aus der Müllverbrennungsanlage, einen Abfall mit der Bezeichnung "Schlamm- und Filterkuchen" und einem Schlamm aus der Abwasserbehandlung.

Die Abfallprobe Nr. 16 (Strahlmittelabfall aus Edelstahl) zeigte in den Biotestverfahren keine Toxizität an, wird jedoch anhand der VVZH aufgrund erhöhter Schwermetallgehalte im Feststoff als besonders überwachungsbedürftig eingestuft. Die erhöhten Schwermetallgehalte sind vermutlich nicht bioverfügbar und verursachen in den Biotests keine Toxizität.


### 5.8.2 Besonders überwachungsbedürftige Abfälle anhand der Einstufung in die Toxizitätsklasse 3

Wird Abfall ab der Toxizitätsklasse 3, also ab dem  $G_{b\ddot{u}}$ -Wert 100, als besonders überwa-

chungsbedürftig eingestuft, so ergibt sich folgendes Bild:

Von den 24 Abfällen werden anhand der vorläufigen Vollzugshinweise 10 Abfälle als besonders überwachungsbedürftiger Abfall eingestuft. Anhand der Einstufung ab der Toxizitätsklasse 3 werden 10 Abfälle als besonders überwachungsbedürftiger Abfall eingestuft. Die Einstufung anhand der Toxizitätsklassen 1-3 in besonders überwachungsbedürftig oder nicht stimmt für 18 der 24 Abfallproben (75 %) mit der Einstufung anhand der vorläufigen Vollzugshinweise überein (Abbildung 4).

Die Abfallproben Nr. 2 (Galvanik-Schlamm, Tox.-Klasse 2), Probe Nr. 16 (Strahlmittelabfall, Tox.-Klasse 1) und Probe Nr. 11 (Schredderleichtfraktion, Tox.-Klasse 2) gelten anhand der vorläufigen Vollzugshinweise als besonders überwachungsbedürftig, erreichen aber nicht die Toxizitätsklasse 3.



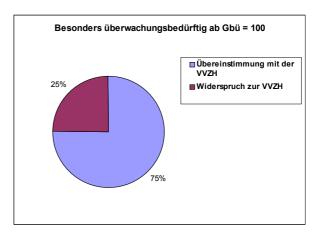



Abbildung 4: Vergleich der Einstufung anhand der Toxizitätsklassen mit der Einstufung anhand der vorläufigen Vollzugshinweise (VVZH) – Übereinstimmung oder Widerspruch.

| zur VVZH<br>ers<br>ungs-<br>o Tox                                                    |                                                                                                                 |                                                                                           |                                                                                            |                                                                                                  |                                                                                                                           |                                                                                                                           |                                                                                                                           |                                                                                                                 |                                                                                                                 |                                                                                                          |                                                                   |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Widerspruch zur WZH<br>(besonders<br>überwachungs-<br>bedürftig ab Tox<br>Klasse 3)  | nein                                                                                                            | nein                                                                                      | ueu                                                                                        | ueiu                                                                                             | nein                                                                                                                      | вį                                                                                                                        | uieu                                                                                                                      | вį                                                                                                              | nein                                                                                                            | ueiu                                                                                                     | nein                                                              |
| Widerspruch zur VVZH<br>(besonders<br>überwachungs-<br>bedürftig ab Tox<br>Klasse 2) | į                                                                                                               | nein                                                                                      | ja                                                                                         | ja                                                                                               | nein                                                                                                                      | ėį                                                                                                                        | ėį                                                                                                                        | ėį                                                                                                              | ja                                                                                                              | į                                                                                                        | nein                                                              |
| Klassifizierung<br>H 14 -<br>Toxizitätsklasse                                        | 7                                                                                                               | 3                                                                                         | 7                                                                                          | 2                                                                                                | 3                                                                                                                         | 3                                                                                                                         | 7                                                                                                                         | 8                                                                                                               | 7                                                                                                               | 7                                                                                                        | 1                                                                 |
| Orientierungswert<br>Tab.5<br>(Eluatwerte)<br>der VVZH                               | kein OW<br>überschritten                                                                                        | kein OW<br>überschritten                                                                  | kein OW<br>überschritten                                                                   | kein OW<br>überschritten                                                                         | OW für Nickel und<br>AOX in flüssiger<br>Probe überschritten                                                              | kein OW<br>überschritten                                                                                                  | kein OW<br>überschritten                                                                                                  | kein OW<br>überschritten                                                                                        | kein OW<br>überschritten                                                                                        | kein OW<br>überschritten                                                                                 | kein OW                                                           |
| Orientierungswert<br>Tab. 4<br>(Feststoffgehalte)<br>der VVZH                        | kein OW<br>überschritten                                                                                        | Summe BTEX und<br>PAK überschritten                                                       | kein OW<br>überschritten                                                                   | kein OW<br>überschritten                                                                         | kein OW<br>überschritten                                                                                                  | kein OW<br>überschritten                                                                                                  | kein OW<br>überschritten                                                                                                  | kein OW<br>überschritten                                                                                        | kein OW<br>überschritten                                                                                        | kein OW<br>überschritten                                                                                 | kein OW                                                           |
| Abfallbeschreibung                                                                   | Schlämme aus der betriebseigenen<br>Abwasserbehandlung mit<br>Ausnahme derjenigen, die unter 06<br>05 02 fallen | Farb- und Lackabfälle, die organische Lösemittel oder andere gefährliche Stoffe enthalten | Farb- und Lackschlämme, die organische Lösemittel oder andere gefährliche Stoffe enthalten | Farb- und Lackschlämme, die<br>organische Lösemittel oder andere<br>gefährliche Stoffe enthalten | wässrige Schlämme, die Farben<br>oder Lacke mit organischen<br>Lösemitteln oder anderen<br>gefährlichen Stoffen enthalten | wässrige Schlämme, die Farben<br>oder Lacke mit organischen<br>Lösemitteln oder anderen<br>gefährlichen Stoffen enthalten | wässrige Schlämme, die Farben<br>oder Lacke mit organischen<br>Lösemitteln oder anderen<br>gefährlichen Stoffen enthalten | wässrige Schlämme, die Farben<br>oder Lacke enthalten, mit<br>Ausnahme derjenigen, die unter 08<br>01 15 fallen | wässrige Schlämme, die Farben<br>oder Lacke enthalten, mit<br>Ausnahme derjenigen, die unter 08<br>01 15 fallen | Gießformen und -sande nach dem<br>Gießen mit Ausnahme derjenigen,<br>die unter 10 10 07 fallen; Formsand | Gießformen und -sande nach dem<br>Gießen mit Ausnahme derjenigen, |
| Probe-<br>Nr.                                                                        | 26                                                                                                              | 27                                                                                        | 4                                                                                          | 8                                                                                                | 1                                                                                                                         | 12                                                                                                                        | 19                                                                                                                        | 3                                                                                                               | 13                                                                                                              | 9                                                                                                        | 6                                                                 |
| Abfall-<br>schlüssel                                                                 | 090903                                                                                                          | 080111*                                                                                   | .080113*                                                                                   | 080113*                                                                                          | 080115*                                                                                                                   | 080115*                                                                                                                   | 080115*                                                                                                                   | 080116                                                                                                          | 080116                                                                                                          | 101008                                                                                                   | 101008                                                            |

Tab. 6: Vergleich der ökotoxikologischen Klassifizierung mit den Orientierungswerten (OW) der vorläufigen Vollzugshinweise (VVZH) des UVM(2002),,ja – kein OW überschritten, Toxizitätsklasse 2 oder 3; 1/ ja – OW überschritten, Toxizitätsklasse = 1; nein – kein Widerspruch zur VVZH.

| Abfallbeschreibung                                                                                                |                                      | Orientierungswert Tab. 4 (Feststoffgehalte) der VVZH                  | Orientierungswert<br>Tab.5<br>(Eluatwerte)<br>der VVZH | Klassifizierung<br>H 14 -<br>Toxizitätsklasse | Widerspruch zur VVZH Widerspruch zur VVZH (besonders überwachungs- überwachungs- bedürftig ab Tox | Widerspruch zur VVZH<br>(besonders<br>überwachungs-<br>bedürftig ab Tox |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Schlämme und Filterkuchen, die Su gefährliche Stoffe enthalten über                                               | W für<br>Su<br>über                  | OW für Kupfer und<br>Summe c<br>überschritten                         | kein OW<br>überschritten                               | 2                                             | ndsse <i>L)</i>                                                                                   | nasse o)<br>1 / ja                                                      |
| Schlämme und Filterkuchen, die Nickel, C gefährliche Stoffe enthalten übers                                       | OW fi<br>ickel, C<br>Summe<br>überse | OW für Blei,<br>Nickel, Chrom (VI),<br>Summe b und c<br>überschritten | OW für Chrom (VI)<br>und Nickel<br>überschritten       | က                                             | nein                                                                                              | nein                                                                    |
| Schlämme und Filterkuchen mit kei<br>Ausnahme derjenigen, die unter überr<br>11 01 09 fallen                      | kei                                  | kein OW<br>überschritten                                              | kein OW<br>überschritten                               | 2                                             | ï                                                                                                 | nein                                                                    |
| Schlämme und Filterkuchen mit kei<br>Ausnahme derjenigen, die unter übers<br>11 01 09 fallen                      | kei<br>übers                         | kein OW<br>überschritten                                              | kein OW<br>überschritten                               | 1                                             | nein                                                                                              | nein                                                                    |
| Bearbeitungsschlämme, die kei gefährliche Stoffe enthalten übers                                                  | kei<br>übers                         | kein OW<br>überschritten                                              | kein OW<br>überschritten                               | 2                                             | Б                                                                                                 | nein                                                                    |
| Bearbeitungsschlämme, die keir gefährliche Stoffe enthalten übers                                                 | keir<br>übers                        | kein OW<br>überschritten                                              | kein OW<br>überschritten                               | 3                                             | ja                                                                                                | ja                                                                      |
| Strahlmittelabfälle, die gefährliche Nickel un Stoffe enthalten C über                                            | OW fül<br>ckel ul<br>3 über          | OW für Kupfer,<br>Nickel und Summe<br>C überschritten                 | kein OW<br>überschritten                               | 1                                             | 1 / ja                                                                                            | 1 / ja                                                                  |
| Strahlmittelabfälle, die gefährliche Sun Stoffe enthalten übers                                                   | W für I<br>Sun<br>übers              | OW für Nickel und<br>Summe C<br>überschritten                         | kein OW<br>überschritten                               | 8                                             | nein                                                                                              | nein                                                                    |
| feste Abfälle aus der<br>Abgasbehandlung übers                                                                    | kei<br>übers                         | kein OW<br>überschritten                                              | OW für Cadmium<br>und Blei<br>überschritten            | 3                                             | nein                                                                                              | nein                                                                    |
| Rost- und Kesselaschen sowie<br>Schlacken mit Ausnahme<br>derjenigen, die unter 19 01 11 fallen über              | ke<br>über                           | kein OW<br>überschritten                                              | kein OW<br>überschritten                               | 2                                             | ja                                                                                                | nein                                                                    |
| OW f  Filterstaub aus der Verbrennung Cadmiu oder Pyrolyse von Abfällen a u übers                                 | OW fadmiu<br>a u<br>übers            | OW für Blei,<br>Cadmium Summe<br>a und c<br>überschritten             | OW für Blei<br>überschritten                           | 3                                             | nein                                                                                              | nein                                                                    |
| Schlämme, die gefährliche Stoffe kei<br>aus einer anderen Behandlung von über<br>industriellem Abwasser enthalten | kei<br>übers                         | kein OW<br>überschritten                                              | OW für AOX<br>überschritten                            | 3                                             | nein                                                                                              | nein                                                                    |
| OW f Schredderleichtfraktionen und Ku Staub mit Ausnahme derjenigen, Summ die unter 19 10 03 fallen Sun           | OW f Ku Quec Summ Sum Übers          | OW für Blei, Kupfer, Quecksilber, Summe a und Summe c                 | kein OW<br>überschritten                               | 2                                             | nein                                                                                              | 1 / ja                                                                  |

Tab. 6: Vergleich der ökotoxikologischen Klassifizierung mit den Orientierungswerten (OW) der vorläufigen Vollzugshinweise (VVZH) des UVM (2002), ja – kein OW überschritten, Toxizitätsklasse 2 oder 3; 1/ ja – OW überschritten, Toxizitätsklasse = 1; nein – kein Widerspruch zur VVZH; Fortsetzung

# 5.9 Vergleich der ökotoxikologischen und chemischen Charakterisierung der Abfälle

# 5.9.1 Abfallgruppenspezifische Beschreibung

In der Regel ist es schwierig, Korrelationen zwischen der Ökotoxizität und dem Gehalt an einzelnen Schadstoffen oder Schadstoffgruppen in komplexen Umweltproben nachzuweisen. Auch in den Abfallproben ist ein Bezug zwischen der Ökotoxizität und dem Gehalt an einzelnen Schadstoffen i. d. R. nicht herzustellen. Allerdings konnte eine hohe Korrelation für den Zusammenhang der Toxizität der Eluate mit dem AOX-Gehalt nachgewiesen werden (siehe Kapitel 5.9.2). Untersuchungen komplexer Proben mit biologischen Testverfahren weisen Wirkungen als Summeneffekt nach, Biotestergebnisse sind daher meist nicht mit Ergebnissen einzelner chemischer Parameter vergleichbar. Chemische Analysewerte, wie sie in den vorläufigen Vollzugshinweisen des Landes Baden-Württemberg als Orientierungswerte für die Beurteilung der Gefährlichkeit von Abfällen verwendet werden, geben einen Einblick in die Schadstoffgehalte der komplexen Abfallprobe. Daraus abgeleitete Einschätzungen der voraussichtlichen Gefährlichkeit können jedoch Defizite aufweisen, da zum einen nicht alle Schadstoffgehalte bekannt sind und zum anderen keine Aussage über das Zusammenwirken von Schadstoffen getroffen werden kann.

# 06 05 Schlämme aus der betriebseigenen Abwasserbehandlung

Aus diesem Bereich wurde eine Probe (Nr. 26) mit dem Abfallschlüssel 060503 untersucht. Es handelt sich um Schlamm einer betriebseigenen Abwasserreinigungsanlage der Automobilindustrie, die über eine Phosphatsedimentation verfügt. Die Probe zeigte eine geringe Toxizität im Algentest und Daphnientest und eine erhöhte Toxizität im Leuchtbakterientest und in den beiden Festphasentests an. Der Abfall wurde anhand der ökotoxikologischen Klassifizierung in die Klasse 2 eingestuft, ist aber nach den vorläufigen Vollzugshinweisen als nicht besonders überwachungsbedürftig kategorisiert, da keine Orientierungswerte überschritten wurden (Tabelle 6). Im Eluat wurde ein erhöhter DOC-Gehalt (250 mg/l) und ein erhöhter Ammonium-Gehalt (77 mg/l) nachgewiesen, eine toxische Wirkung des bei erhöhtem pH-Wert gebildeten Ammoniaks ist nicht auszuschließen (siehe Kapitel 5.9.2). Der Orientierungswert für Nickel im Eluat (1.000  $\mu$ g/l) wurde unterschritten (802  $\mu$ g/l), auch geringe Mengen an leichtflüchtigen Kohlenwasserstoffen waren im Eluat (31 µg/l) nachweisbar. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

#### 08 01 Abfälle aus HZVA und Entfernung von Farben und Lacken

Aus dieser Abfallgruppe wurden acht Abfälle unterschiedlicher Abfallschlüssel untersucht. Alle Abfälle der Gruppe 0801 wurden in die Toxizitätsklassen 2-3 eingestuft, sechs der acht Proben sind jedoch anhand der Orientierungswerte der vorläufigen Vollzugshinweise nicht besonders überwachungsbedürftig.

Die Abfallprobe 27 war in allen Testsystemen toxisch und gentoxisch und wird in die Toxizitätsklasse 3 eingestuft. Das Eluat zeigte einen hohen DOC-Wert mit 11.000 mg/l. Sie weist nach den vorläufigen Vollzugshinweisen Überschreitungen der Orientierungswerte von BTEX und PAK im Feststoff auf und gilt damit als besonders überwachungsbedürftig. Die bisherige Einstufung in besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

Die Abfallprobe Nr. 4 zeigte im Algentest, im Bakterienkontakttest und im Pflanzentest toxische Wirkungen, die zur Einstufung in die Toxizitätsklasse 2 führten. Orientierungswerte der vorläufigen Vollzugshinweise wurden jedoch nicht überschritten. Im Eluat wurden leichtflüchtige Kohlenwasserstoffe (Ethylbenzol und Xylol) im mg/l-Bereich (aus chemisch-analytischen Gründen nicht genauer messbar) nachgewiesen, der BTEX-Gehalt im Feststoff lag mit 277 mg/kg unter dem Orientierungswert für Feststoffe von 1000 mg/kg. Des Weiteren beinhaltet der Farbund Lackschlamm bakterizide Stoffe. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwa-

chungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

Die Abfallprobe Nr. 8 war im Algentest und im Leuchtbakterientest toxisch und wurde in die Toxizitätsklasse 2 eingestuft: Das Eluat wies erhöhte Zinkwerte (10,1 mg/l) auf, die möglicherweise die Toxizität im Algentest und Leuchtbakterientest bedingten (Algentest  $EC_{50} = 0.25$  mg/l, Altlasten Fachinformation 2003). Nachgewiesen wurden auch erhöhte BTEX-Werte im Eluat (1,9 mg/l) und im Feststoff (791 mg/kg), Orientierungswerte der vorläufigen Vollzugshinweise wurden jedoch nicht überschritten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

Die Abfallprobe Nr. 1 ist flüssig und wurde direkt, ohne Eluatherstellung, untersucht. Sie gehört zu den drei am stärksten toxischen Abfallproben und ist in allen Testverfahren stark toxisch und zudem gentoxisch. Die Probe wies eine Überschreitung der Orientierungswerte im Eluat für Nickel (1.100 mg/l) und für AOX (3,4 mg/l) auf. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

Die Abfallprobe 12 war in allen Testverfahren toxisch, im Algentest stark toxisch, was zu einer Einstufung in die Toxizitätsklasse 3 führte. Der Orientierungswert für AOX im Eluat (1,5 mg/l) wurde mit 1,3 mg/l gerade nicht erreicht, kann aber in den aquatischen Testsystemen Toxizität bewirken. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wurde durch die Biotestergebnisse nicht bestätigt.

Die Abfallprobe Nr. 19 wurde aufgrund des Ergebnisses im Pflanzentest in die Toxizitätsklasse 2 eingestuft. Sie zeigte jedoch keine Überschreitungen der Orientierungswerte an. Erhöhte Werte für BTEX mit 283 mg/kg (OW = 1.000 mg/kg), PAK mit 90,3 mg/kg (OW = 200 mg/kg) und AOX (210 mg/kg) im Feststoff wurden nachgewiesen. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

Die Abfallprobe Nr. 3 war im Leuchtbakterientest toxisch und im Pflanzentest stark toxisch, was zur Einstufung in die Toxizitätsklasse 3 führte. Orientierungswerte der VZH wurden jedoch nicht überschritten, erhöhte Zinkwerte im Eluat (0,9 mg/l) und im Feststoff (135.600 mg/kg) sind nachgewiesen und können Toxizitäten verursacht haben (Algentest EC50 = 0,25 mg/l, Altlasten Fachinformation 2003). Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in

nicht besonders überwachungsbedürftig wurde durch die Biotestergebnisse nicht bestätigt.

Die Abfallprobe Nr. 13 war im Algentest und in den beiden Festphasentests toxisch und wurde in die Toxizitätsklasse 2 eingestuft. Sie wies insbesondere einen hohen AOX-Gehalt im Feststoff (1.260 mg/kg), nicht aber im wässrigen Eluat (0,27 mg/l) auf, was die toxischen Effekte in den beiden Festphasentests erklären könnte. Auffällig war der hohe DOC-Gehalt im Eluat mit 1.100 mg/l und Ammoniumstickstoff-Gehalt mit 78 mg/l. Eine toxische Wirkung des Ammoniaks ist nicht auszuschließen (siehe Kapitel 5.9.2). Bei der Probenvorbereitung für die chemische Analytik bildete sich ein Gel aus, sodass PCB und PAK nicht bestimmt werden konnten. Orientierungswerte der vorläufigen Vollzugshinweise wurden jedoch nicht überschritten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

# 10 10 Abfälle vom Gießen von Nichteisenmetallen

In diese Abfallgruppe gehören zwei Abfälle aus der Alu-Gießerei mit demselben Abfallschlüssel 101008, ein Formsand (Probe Nr. 6) und ein Kernsand (Probe Nr. 9). Der Kernsand wurde als nicht toxisch in Klasse 1, der Formsand als toxisch aufgrund der Ergebnisse im Algentest, Leuchtbakterientest und Bakterienkontakttest in Klasse 2 eingestuft. Der Kernsand war mit Härter und Aminen beaufschlagt und zeigte deutlich höhere Schwermetallgehalte als der Formsand.

Der Formsand ist nur mit Bentonit beaufschlagt. Es sind keine Orientierungswerte der vorläufigen Vollzugshinweise überschritten. Die bisherige Einstufung in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

11 01 Abfälle aus der chemischen Oberflächenbearbeitung und Beschichtung von Metallen und anderen Werkstoffen (z. B. Galvanik, Verzinkung, Beizen, Ätzen, Phosphatieren, alkalisches Entfetten und Anodisierung)

Es wurden 4 Abfallproben untersucht, zwei des Abfallschlüssels 110109\* und zwei des Abfallschlüssels 110110.

Der Abfall der Probe Nr. 2 (Galvanik, Abfallschlüssel 110109\*) wurde in die Toxizitätsklasse 2 eingestuft, er stammte aus der Beschichtung von Leiterplatten, die Orientierungswerte für Kupfer und Summe c wurden überschritten. Der Abfall ist nach den vorläufigen Vollzugshinweisen besonders überwachungsbedürftig. Die bisherige Einstufung in besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle ab Toxizitätsklasse 2 als besonders überwachungsbedürftig gelten.

Der Abfall der Probe Nr. 30 (bleichromathaltiger Schlamm), ebenfalls Abfallschlüssel 110109\*, wurde aufgrund hoher Toxizitäten in allen Biotests und nachgewiesener Gentoxizität in die Toxizitätsklasse 3 eingestuft. Die Orientierungswerte für Blei, Nickel, Chrom (VI), Summe b und

c im Feststoff sowie Chrom (VI) im Eluat waren überschritten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

Die Abfallprobe Nr. 17 des Abfallschlüssels 110110 war nur im Bakterienkontakttest toxisch (Toxizitätsklasse 2). Orientierungswerte der vorläufigen Vollzugshinweise wurden nicht überschritten, die chemischen Analyseparameter zeigten keine Auffälligkeiten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

Die Abfallprobe Nr. 28 des Abfallschlüssels 110110 war in keinem Testsystem toxisch und wies keine Überschreitungen der Orientierungswerte der vorläufigen Vollzugshinweise auf, nur der Nickelgehalt der Probe war erhöht (1.100 mg/kg, OW = 2.500 mg/kg). Die bisherige Einstufung in nicht besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

12 01 Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenbearbeitung von Metallen und Kunststoffen

Zwei Abfallproben des Abfallschlüssels 120116\* bzw. 120116\*/120117 und zwei des Abfallschlüssels 120114\* wurden untersucht.

Der Bearbeitungsschlamm der Probe Nr. 7 war bakterientoxisch in den beiden Bakterientestsystemen, was zur Einstufung in die Toxizitätsklasse 2 führte. Er entstammte der Reinigung von Fahrzeugteilen und dem Abfall aus Nassabscheidern. Leichtflüchtige Kohlenwasserstoffe waren nachweisbar (m-/p-Xylol 55 µg/l, o-Xylol 21 µg/l, Ethylbenzol 14 µg/l). Die Probe 7 zeigte einen erhöhten DOC-Wert (110 mg/l) im Eluat und einen erhöhten Anteil an lipophilen Stoffen (37 Gew.-%) im Feststoff. Sie führte bei der Untersuchung zum Teil zu nicht reproduzierbaren Ergebnissen im Algentest und insbesondere im Pflanzentest. Orientierungswerte der vorläufigen Vollzugshinweise wurden nicht überschritten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

Der Bearbeitungsschlamm der Probe Nr. 14 war in allen Testsystemen außer dem Leuchtbakterientest toxisch bis stark toxisch und wird in die Toxizitätsklasse 3 eingestuft. Er entstammt der Reinigung von Karosserien und enthält Metallspäne und Tenside, die Toxizitäten in den Eluatuntersuchungen und Festphasentests bewirken könnten. Auffällig waren die hohen Zink-Gehalte im Feststoff mit 77.000 mg/kg und im Eluat mit 26,4 mg/l, die ebenfalls zu Toxizitäten in den biologischen Testsystemen führen können (Algentest  $EC_{50} = 0,25$  mg/l, Altlasten Fachinformation 2003). Orientierungswerte der vorläufigen Vollzugshinweise wurden nicht überschritten.

Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wurde durch die Biotestergebnisse nicht bestätigt.

Die Abfallprobe Nr. 16 (Strahlmittelabfall aus Edelstahl) zeigte in den Biotestverfahren keine Toxizität an, wird jedoch anhand der vorläufigen Vollzugshinweise aufgrund erhöhter Schwermetallgehalte im Feststoff als besonders überwachungsbedürftig eingestuft. Die erhöhten Schwermetallgehalte sind vermutlich nicht bioverfügbar und verursachen auch in den Festphasentests keine Toxizität. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in besonders überwachungsbedürftig wurde durch die Biotestergebnisse nicht bestätigt.

Die Abfallprobe 21 (Strahlmittelabfall) wies erhöhte Toxizitätswerte im Algentest, im Leuchtbakterientest und im Bakterienkontakttest auf und wurde in die Toxizitätsklasse 3 eingestuft. Orientierungswerte für Nickel und Summe c wurden überschritten, womit der Abfall als besonders überwachungsbedürftig gilt. Es handelte sich hierbei um Abfall zwei verschiedener Abfallschlüssel (120116\*/120117), der aufgrund geringer Mengen gemeinsam gesammelt und entsorgt wird. Die bisherige Einstufung in besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

# 19 01 Abfälle aus der Verbrennung oder Pyrolyse von Abfällen

Es handelt sich hierbei um drei verschiedene Abfälle einer Müllverbrennungsanlage.

Der Filterstaub der Abfallprobe Nr. 24 wurde aufgrund der Toxizität im Algentest, Bakterienkontakttest und Pflanzentest in die Toxizitätsklasse 3 eingestuft und zeigte deutlich überschrittene Orientierungswerte der vorläufigen Vollzugshinweise für Schwermetalle Summe c, Cadmium und Blei im Feststoff und Blei im Eluat auf (19 mg/l, OW = 1mg/l). Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

Der feste Abfall aus der Abgasbehandlung mit der Abfallprobe Nr. 23 (Rauchgaswäsche) war in allen Testsystemen außer dem Leuchtbakterientest toxisch und wurde in die Toxizitätsklasse 3 eingestuft. Orientierungswerte für Cadmium und Blei (Eluat) wurden überschritten, die Arsen-Konzentration von 395  $\mu$ g/l erreichte den Orientierungswert (500  $\mu$ g/l) gerade nicht, der Quecksilber-Wert lag bei 6,6  $\mu$ g/l (OW = 20  $\mu$ g/l). Die bisherige Einstufung in besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

Rost- und Kesselasche des Abfallschlüssels 190112 zeigte Toxizität nur im Bakterienkontakttest (Probe Nr. 22, Toxizitätsklasse 2), wies in der Feststoff- Analytik erhöhte AOX-Werte (120 mg/kg) und in der Eluat-Analytik erhöhte Blei- (562 µg/l) und Zink-Werte (740 µg/l) auf,

die aber die Orientierungswerte der vorläufigen Vollzugshinweise nicht überschritten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in nicht besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle erst ab Toxizitätsklasse 3 als besonders überwachungsbedürftig gelten.

#### 19 08 Abfälle aus Abwasserbehandlungsanlagen a. n. g.

Aus dieser Abfallgruppe wurde ein Abfall des Abfallschlüssels 190813\*, Probe Nr. 18 untersucht. Es wurde in allen Biotests Toxizität nachgewiesen, insbesondere eine hohe Algen- und Pflanzentoxizität, die zur Einstufung in die Toxizitätsklasse 3 führte. Im Feststoff wurden 820 mg/kg AOX nachgewiesen, im Eluat noch 2,1 mg/l (OW Eluat = 1,5 mg/l), der Orientierungswert wurde damit überschritten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in besonders überwachungsbedürftig wurde durch die Biotestergebnisse bestätigt.

# 19 10 Abfälle aus dem Shreddern von metallhaltigen Abfällen

Es wurde eine Probe Nr. 11, die Schredderleichtfraktion, aus der Gruppe 1910 untersucht (191004). Die Abfallprobe war durch inhomogenes Material gekennzeichnet, es waren Metalle, Kunststoffe und anderes Material in der Probe vorhanden. Die Probe zeigte im Algentest und im Daphnientest eine geringe Toxizität, im Leuchtbakterientest, Bakterienkontakttest und Pflanzentest eine mittlere Toxizität, die zur Einstufung in die Toxizitätsklasse 2 führte.

Die Orientierungswerte für Blei, Kupfer, Quecksilber, Summe a und c (Feststoff) wurden überschritten. Die bisherige Einstufung anhand der vorläufigen Vollzugshinweise in besonders überwachungsbedürftig wird anhand der Biotestergebnisse bestätigt, wenn Abfälle ab Toxizitätsklasse 2 als besonders überwachungsbedürftig gelten.

# 5.9.2 Zusammenhang zwischen Toxizität und chemischen Parametern

Im Folgenden werden ausgewählte chemische Parameter diskutiert, die bei der Untersuchung der Abfälle und dem Nachweis von Toxizität einen Einfluss auf das Testergebnis haben können.

#### **DOC-Gehalt**

Der DOC-Gehalt der untersuchten Abfallproben-Eluate lag zwischen 1mg/l und 11.000 mg/l im Eluat. Der DOC-Gehalt ist ein Summenparameter, der den Gehalt an organischen Kohlenstoffverbindungen beschreibt, aber keine Unterscheidung zwischen toxischen oder nicht toxischen Verbindungen macht. So war die Probe 27 mit dem DOC-Gehalt von 11.000 mg/l in allen Testsystemen toxisch und gentoxisch und in die Toxizitätsklasse 3 eingestuft. Sie weist nach den vorläufigen Vollzugshinweisen des Landes Baden-Württemberg Überschreitungen der Orientierungswerte von BTEX und PAK im Feststoff auf. Der beobachtete Zusammenhang zwischen DOC-Gehalt in Eluatproben verschiedener Industrieabfälle und deren Toxizität in verschiedenen Biotestsystemen ist nicht zwingend, sondern gibt nur einen Hinweis auf eine mögliche Schadstoffgruppe. So ist im Einzelfall zu prüfen, welche toxischen organischen Kohlenstoffverbindungen in der Probe enthalten sind.

#### **AOX-Gehalt**

Für den AOX-Gehalt der Abfalleluate wurde eine enge Korrelation (Korrelationskoeffizient r = 0.8) zu den Biotestergebnissen im Eluat (Algentest, Leuchtbakterientest, Daphnientest) nachgewiesen, nicht aber für den AOX-Gehalt im Feststoff zum Pflanzentest (r = 0.08).

#### **Ammonium-Gehalt**

Die Abfallproben enthielten i. d. R. geringe Ammonium-Gehalte, bis auf zwei Proben (Nr. 13 -78 mg/l, Nr. 26 - 77 mg/l). Inwieweit die Ammoniumgehalte die Testergebnisse beeinflussten, kann nicht abschließend geklärt werden, da auch Schadstoffe wie z. B. AOX nachweisbar waren. Gellert (2000) konnte anhand von Kläranlagenabläufen nachweisen, dass eine steigende Nges-Konzentration (bis 44,1 mg/l) in Abwasserproben nicht mit dem Algentest, Daphnientest und Leuchtbakterientest korrelierte. Die toxische Wirkung von Ammonium bzw. Ammoniak ist stark abhängig vom pH-Wert und der Temperatur, da bei erhöhter Temperatur und erhöhtem pH-Wert zunehmend Ammoniak gebildet wird, der deutlich toxischer ist als Ammonium (Warg 1987). Ammonium kann als Nährstoff auch eine fördernde Wirkung im Biotest haben, was zu einer Unterschätzung der toxischen Eigenschaften von Abfallproben führen kann.

#### Leitfähigkeit

In 5 Abfallproben-Eluaten war die Leitfähigkeit z. T. sehr stark erhöht (Probe 30 LF= 97.700 µS/cm). Eine hohe Leitfähigkeit war bei den hier untersuchten Abfallproben mit einer erhöhten Konzentration an Schwermetallen verbunden, so dass die toxische Wirkung wahrscheinlich auf erhöhten Schwermetallkonzentrationen beruhte.

#### Zink-Gehalt

In einigen Abfallproben wurde eine hohe Konzentration an Zink im Feststoff bis zu 119.200 mg/kg und im Eluat bis zu 26,4 mg/l nachgewiesen. Toxische Wirkungen von Zink beginnen bereits ab einer Konzentration von 0,25 mg/l im Algentest (Altlasten Fachinformati-

on 2003) und sind deshalb auch für die untersuchten Abfälle bzw. Abfalleluate nicht auszuschließen. Orientierungswerte für Zink sind in den vorläufigen Vollzugshinweisen nicht festgelegt.

Die Identifizierung zumindest der Stoffklasse, die vorrangig für die in Biotests ermittelte Toxizität verantwortlich ist, kann anhand einer Fraktionierung der komplexen Abfallproben bzw. Eluate mit anschließender biologischer und chemischer Untersuchung einzelner Fraktionen erfolgen. Eine Untersuchungsstrategie für industrielle und kommunale Abwässer wurde hierfür von der US-EPA (Kristensen 1992) und für Sedimente von Brack et al. (1999) sowie Hollert und Braunbeck (2001) entwickelt.

## 6 Verfahrensvorschlag

Die Abfälle wurden in diesem Untersuchungsvorhaben mit insgesamt sechs biologischen Testverfahren auf ihre Toxizität und ihr gentoxisches Wirkpotenzial untersucht. Erfasst wurden die akute Toxizität mit dem Leuchtbakterientest, dem Bakterienkontakttest und dem Daphnientest, die chronische Toxizität mit dem Algentest und dem Pflanzentest und das gentoxische Wirkpotenzial mit dem *umu-*Test.

Neben der Untersuchung von Eluaten auf wasserlösliche Schadstoffe und deren Wirkungen wurde anhand der Festphasentests die Wirkung der in der Feststoffprobe gebundenen Schadstoffe untersucht, mit dem Pflanzentest auch an höheren pflanzlichen Organismen. Das in diesem Vorhaben angewendete Untersuchungsvolumen mit sechs biologischen Testverfahren ist jedoch für eine Routineüberprüfung von Abfällen zeit- und kostenintensiv, so dass sich die Frage nach dem Mindestumfang der ökotoxikologischen Prüfung von Abfällen, einer minimalen Testbatterie, stellt.

Als Testbatterie bezeichnet man eine Kombination von Testverfahren, die zur Prüfung von Umweltproben eingesetzt werden, um eine möglichst vollständige Gefährdungsabschätzung zu gewährleisten. So werden beispielsweise für die Prüfung von Abwasser vier biologische Testverfahren eingesetzt (Fischeitest, Daphnientest, Leuchtbakterientest, Algentest), um unter Be-

rücksichtigung der verschiedenen biologischen Funktionsebenen die Gewässer vor gefährlichen Einleitungen zu schützen.

Möchte man den Umfang der Untersuchung von Abfällen mit biologischen Testverfahren auf ein Mindestmaß durch Einführung einer minimalen Testbatterie sinnvoll reduzieren, so sind folgende Überlegungen anzustellen:

- Welche Testsysteme sind für die Einstufung der Abfalltoxizität relevant?
- Es sollte die akute und chronische Wirkung untersucht und verschiedene biologische Funktionsebenen (Produzenten, Konsumenten und Destruenten) erfasst werden.
- Es sollte mindestens ein Test mit dem Eluat des Abfalls Bestandteil der Testbatterie sein, um die Wirkung mobilisierbarer Schadstoffe zu erfassen.
- Ein Festphasentest sollte ebenfalls Bestandteil der Testbatterie sein, um die Toxizität der unveränderten Probe zu ermitteln.
- Wie ist eine weitere Reduzierung des Testumfanges und damit der Kosten möglich?

# 6.1 Ableitung einer minimalen Testbatterie

Vergleicht man die Ergebnisse der einzelnen Testverfahren mit der Einstufung in die maximale Toxizitätsklasse anhand aller Ergebnisse der ökotoxikologischen Prüfung (Tabelle 7), so ist deutlich zu erkennen, dass die anhand des Daphnientests erfolgte Einstufung in eine der Toxizitätsklassen nur zu 25 % mit dem Gesamtergebnis übereinstimmt. Die beste Übereinstimmung weist der Bakterienkontakttest mit 79 % und der Pflanzentest mit 70 % auf.

Kombiniert man zwei Testverfahren, so wird die beste Übereinstimmung mit der Gesamteinstufung anhand der Kombination von Algentest und Bakterienkontakttest (92 %) und der Kombination von Bakterienkontakttest und Pflanzentest (91 %) erzielt.

Kombiniert man drei Testverfahren miteinander, so wird die Gesamteinstufung in die jeweilige Toxizitätsklasse bereits zu 100 % mit der Kombination von Algentest, Bakterienkontakttest und Pflanzentest erzielt. Aber auch die Kombination von Leuchtbakterientest, Bakterienkontakttest, Pflanzentest und die Kombination von Algentest, Leuchtbakterientest und Bakterienkontakttest führen bereits zu einer Übereinstimmung der Einstufung von jeweils 96 %.

| Testkombination                                         | Übereinstimmung mit<br>Gesamteinstufung<br>[Anzahl] | Übereinstimmung<br>mit Gesamt-<br>einstufung<br>[%] |  |
|---------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|
| Algentest                                               | 11 von 24                                           | 46                                                  |  |
| Daphnientest                                            | 6 von 24                                            | 25                                                  |  |
| Leuchtbakterientest                                     | 11 von 24                                           | 46                                                  |  |
| Bakterienkontakttest                                    | 19 von 24                                           | 79                                                  |  |
| Pflanzentest                                            | 16 von 23                                           | 70                                                  |  |
| Algentest, Leuchtbakterientest                          | 15 von 24                                           | 63                                                  |  |
| Algentest, Daphnientest                                 | 15 von 24                                           | 63                                                  |  |
| Algentest, Bakterienkontakttest                         | 22 von 24                                           | 92                                                  |  |
| Algentest, Pflanzentest                                 | 19 von 23                                           | 83                                                  |  |
| Leuchtbakterientest, Pflanzentest                       | 18 von 23                                           | 78                                                  |  |
| Leuchtbakterientest, Daphnientest                       | 12 von 24                                           | 50                                                  |  |
| Leuchtbakterientest, Bakterienkontakttest               | 20 von 24                                           | 83                                                  |  |
| Daphnientest, Bakterienkontakttest                      | 19 von 24                                           | 79                                                  |  |
| Daphnientest, Pflanzentest                              | 16 von 23                                           | 70                                                  |  |
| Bakterienkontakttest, Pflanzentest                      | 21 von 23                                           | 91                                                  |  |
| Algentest, Leuchtbakterientest, Pflanzentest            | 19 von 23                                           | 83                                                  |  |
| Algentest, Leuchtbakterientest,<br>Bakterienkontakttest | 23 von 24                                           | 96                                                  |  |
| Algentest, Leuchtbakterientest, Daphnientest            | 16 von 24                                           | 67                                                  |  |
| Algentest, Bakterienkontakttest, Pflanzentest           | 23 von 23                                           | 100                                                 |  |
| Algentest, Bakterienkontakttest, Daphnientest           | 22 von 24                                           | 92                                                  |  |
| Algentest, Pflanzentest, Daphnientest                   | 20 von 23                                           | 87                                                  |  |
| Leuchtbakterientest, Bakterienkontakttest, Pflanzentest | 22 von 23                                           | 96                                                  |  |
| Leuchtbakterientest, Bakterienkontakttest, Daphnientest | 20 von 24                                           | 83                                                  |  |
| Leuchtbakterientest, Pflanzentest, Daphnientest         | 18 von 23                                           | 78                                                  |  |
| Bakterienkontakttest, Pflanzentest, Daphnientest        | 21 von 23                                           | 91                                                  |  |

Tab. 7: Übereinstimmung der Einstufung in die Toxizitätsklasse des jeweiligen Testverfahrens bzw. Testkombination mit der Gesamteinstufung.

Die Kombination der drei Testverfahren Algentest, Bakterienkontakttest und Pflanzentest ist ausreichend, um die Toxizität der hier untersuchten Abfälle abzubilden.

Mit den Testverfahren werden die akuten und chronischen Wirkungen erfasst, die verschiedenen biologischen Funktionsebenen geprüft und sowohl das Eluat als auch der feste Abfall auf seine toxische Wirkung untersucht. Basierend auf den hier erarbeiteten Ergebnissen und unter der Voraussetzung, dass die erzielten Ergebnisse auch auf andere Abfälle

übertragbar sind, wird folgende minimale Testbatterie für die ökotoxikologische Untersuchung von Abfällen vorgeschlagen:

Minimale Testbatterie: Eluat-Untersuchung: Algentest

Festphasen-Untersuchung: Pflanzentest, Bakterienkontakttest

Nicht vertreten in dieser Testbatterie ist aufgrund mangelnder Sensitivität der Daphnientest als Vertreter der Gruppe der Konsumenten, hier wird Entwicklungsbedarf gesehen (s. Kapitel 7).

Um den technischen und wirtschaftlichen Aufwand weiter zu minimieren, wird die Einführung eines Limit-Tests vorgeschlagen:

#### 6.2 Limit-Test

Die Abfälle werden nicht anhand einer Verdünnungsreihe bis zu dem G-Wert untersucht, der keine Toxizität mehr anzeigt, sondern nur in der für die Abgrenzung zwischen besonders überwachungsbedürftig und nicht besonders überwachungsbedürftig noch zu vereinbarenden Verdünnungsstufe  $G_{b\bar{u}}$ . Liegt die Toxizität unter der vereinbarten Verdünnungsstufe (z.B.  $G_{10}$  oder  $G_{100}$ ), so ist Abfall nicht besonders überwachungsbedürftig.

# 6.3 Untersuchungen des Eluates auf Gentoxizität mit dem umu-Test

Der *umu*-Test zeigte für drei Proben Gentoxizität an. Wird der *umu*-Test oder ein anderes Verfahren zur Bestimmung der Gentoxizität bereits zur Beschreibung des Kriteriums H7 krebserzeugend bzw. H11 mutagen eingesetzt, so kann auf diesen zur Beschreibung des Kriteriums H14 verzichtet werden. Der *umu*-Test ist gleichwohl eine im CEN-Entwurf (2002) zur Beschreibung des Kriteriums H14 in Betracht gezogene Testmethode.

#### 6.4 Wirtschaftlichkeit

Die Kosten für die Testung einer Abfallprobe auf ihre Ökotoxizität wurden anhand von Firmenangaben und einer Eigenkalkulation abgeschätzt (Tabelle 8).

Eine deutliche Kostenreduktion wird bereits durch die Einführung einer minimalen ökotoxikologischen Testbatterie erreicht. Die Einführung eines Limittests reduziert die Gesamtkosten einer ökotoxikologischen Charakterisierung auf ca. 315 € / Probe. Die Analytik der Abfallprobe entsprechend der Parameterliste der vorläufigen Vollzugshinweise kostet 1338 € / Probe (mündl. Mitteilung TÜV-Süd), davon belaufen sich die Kosten alleine für die Dioxin-Bestimmung auf 550 €, für die Eluat-Analytik auf 277 €.

Auch wenn man davon ausgeht, dass bei zu treffenden Entscheidungen im Rahmen der vorläufigen Vollzugshinweise nicht immer die Untersuchung aller Parameter notwendig ist (z.B. Verzicht auf die Untersuchung von Dioxinen bei Galvanikschlämmen), bleiben die Kosten für Biotests doch vergleichsweise in vertretbaren Größenordnungen. Ein Problem könnte jedoch der Zeitbedarf für den Pflanzentest (ca. 3 Wochen) bedeuten, wenn der Vollzug schnelle Entscheidungen zu treffen hat.

| Test                                                                         | Kosten (€)<br>G-Wert –<br>Bestimmung | Kosten (€)<br>Limit-Test<br>(G = 10 oder 100) | Kosten (€) chemische<br>Analytik entsprechend<br>der vorläufigen<br>Vollzugshinweise |
|------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|
| Leuchtbakterientest                                                          | 210                                  | 70                                            |                                                                                      |
| Algentest-miniaturisierte Form (Eigenkalkulation)                            | 150                                  | 70                                            |                                                                                      |
| Daphnientest                                                                 | 210                                  | 70                                            |                                                                                      |
| Pflanzentest (3 Arten)                                                       | 700                                  | 175                                           |                                                                                      |
| Bakterienkontakttest (Eigenkalkulation)                                      | 150                                  | 70                                            |                                                                                      |
| Kosten, gesamt                                                               | 1.420                                | 455                                           |                                                                                      |
| minimale Testbatterie:<br>Algentest, Bakterienkon-<br>takttest, Pflanzentest | 1.000                                | 315                                           | 1.338                                                                                |

Tabelle 8: Kostenkalkulation für eine Abfallprobe (Firmenangaben und Eigenkalkulation).

## 7 Empfehlungen

## 7.1 Eluat-Untersuchung

Mit der Eluatuntersuchung wird im Grunde das Kriterium H13 (Auslaugungsprodukt) geprüft. Die Ausführungen in diesem Bericht unterstellen, dass ein ökotoxisches Eluat auch gleichzeitig einen ökotoxischen Abfall bedeutet. Die EGRichtlinie 91/689/EWG ist insoweit unglücklich formuliert, als ein Abfall nur dann als gefährlich gilt, wenn das Eluat als Auslaugungsprodukt eines der in der Liste obenstehenden Eigenschaften (also H1 bis H12) erfüllt. Das nachfolgende Kriterium H14 ist damit nicht erfasst. Ein schlüssiger Grund hierfür ist nicht bekannt. Eine redaktionelle Korrektur der EG-Richtlinie wird angeregt.

## 7.2 Biologische Testverfahren

#### **Pflanzentest**

Für die Testung der Original-Abfallprobe steht mit dem Pflanzentest nach OECD (2000) eine standardisierte Methode zur Verfügung. Die Ergebnisse zeigten jedoch eine größere Schwankungsbreite. Ein wichtiger Einflussfaktor auf die Variabilität der G-Werte ist möglicherweise die stoffliche Inhomogenität der Probe, ihre Mischbarkeit mit dem Standardboden und ihre Wasserhaltekapazität. Die Keimrate erwies sich als das am Wenigsten geeignete Wirkungskriterium, da diese auch von der Probenstruktur und ihrer Wasserführungskapazität beeinflusst wird. Darüber hinaus führt eine sehr geringe Keimung in

der Testdurchführung zu einer statistischen Unsicherheit der beiden anderen Wirkungskriterien. Hier sollten weitere Anpassungen des Testsystems an die Testmatrix von Abfallproben und deren relativ großer Heterogenität in Bezug auf Struktur und Wasserhaltungskapazität vorgenommen werden. Empfohlen wird außerdem die Überprüfung geeigneter Pflanzenarten (Wärmetoleranz, Vertreter der Leguminosen), die Auswahl des Standardbodens und des Testdesigns.

#### Bakterienkontakttest

Der Bakterienkontakttest erwies sich als schnell implementierbare Methode, die innerhalb eines Tages sensitive und reproduzierbare Ergebnisse liefert. Bei einigen Abfallproben führten Probeninhaltsstoffe zu einer Reduzierung des Reaktionsindikators Resazurin und beeinflussten dadurch die Genauigkeit der Testergebnisse. Bei manchen Proben setzte sich der Wasseranteil der Probe ab, was zu einer Ungenauigkeit beim Testansatz führen kann. Hier sollten vor einer Einführung als Routinemethode weitere Anpassungen an die Matrix der Abfallproben vorgenommen werden.

# Biotestverfahren mit einem Vertreter der Funktionsebene Konsumenten

In der hier empfohlenen Testbatterie nicht vertreten ist die Gruppe der Konsumenten. Als deren Vertreter wurde im Rahmen der Untersuchung der Daphnientest durchgeführt, dieser

erwies sich jedoch als nicht ausreichend sensitiv. Auf die Gruppe der Konsumenten sollte jedoch grundsätzlich nicht verzichtet werden. Andere Methoden aus der ökotoxikologischen Testung sind daher auf ihre Eignung für die Abfallprüfung zu untersuchen. Zu prüfen wären in erster Linie Methoden, die bereits Eingang in die CEN-Vorschrift gefunden haben, wie z.B. der Collembolentest (CEN 2002) oder der Nematodentest (Traunsburger et al. 1997). Eine weitere, DIN genormte Testmethode, die für die Prüfung von Abfall-Eluaten in Frage käme, ist der Fi-

scheitest (DIN 38415-6). Für den Fischeitest ist keine Genehmigung nach dem Tierschutzgesetz erforderlich.

Wird ein geeigneter Testorganismus für die Prüfung der biologischen Funktionsebene Konsumenten gefunden, ist ein Vergleich der Empfindlichkeit mit der hier empfohlenen Testbatterie vorzunehmen, um so den wirtschaftlichen Aufwand für die Prüfung der Abfall-Toxizität zu minimieren.

© LfU Literatur 47

## 8 Literatur

Altlasten-Fachinformation (2003). UVM - Umwelt- und Verkehrsministerium Baden-Württemberg. AlfaWeb - Altlasten-Fachinformationen im World Wide Web.

www.xfaweb.baden-wuerttemberg.de/alfaweb/

Brack, W., Altenburger, R., Ensenbach, U., Möder, M., Segner, H., Schürrmann, G. (1999). Bioassay-directed identification of organic toxicants in river sediments in the industrial region of Bitterfeld (Germany) – A contribution to hazard assessment. Arch. Cont. Toxicol. 37:164-174.

CEN TC292/WG7/N45, 07/2002. - Europäisches Komitee für Normung. Characterization of waste – preparation of waste samples for ecotoxicity tests.

DIN 38412-30 T30/03.89. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung - Testverfahren mit Wasserorganismen (Gruppe L) - Teil 30: Bestimmung der nicht akut giftigen Wirkung von Abwasser gegenüber Daphnien über Verdünnungsstufen (L 30).

DIN 38412-33 T33/03.91. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung - Testverfahren mit Wasserorganismen (Gruppe L) - Teil 33: Bestimmung der nicht giftigen Wirkung von Abwasser gegenüber Grünalgen (Scenedesmus-Chlorophyll-Fluoreszenztest) über Verdünnungsstufen (L33).

DIN 38412-48 T48/09.02. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung – Testverfahren mit Wasserorganismen (Gruppe L) – Teil 48: *Arthrobacter globiformis*-Kontakttest für kontaminierte Feststoffe (L48).

DIN 38414 Teil4 S4/10.84. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung – Schlamm und Sedimente (Gruppe S) – Teil4: Bestimmung der Eluierbarkeit mit Wasser (S4).

DIN 38415-3 T3/12.96. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung - Suborganismische Testverfahren (Gruppe T) - Teil 3: Bestimmung des erbgutverändernden Potentials von Wasser mit dem *umu*-Test (T3).

DIN 38415-6 T6/09.01. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung - Suborganismische Testverfahren (Gruppe T) - Teil 6:Giftigkeit gegenüber Fischen. Bestimmung der nicht akut giftigen Wirkung von Abwasser auf die Entwicklung von Fischeiern über Verdünnungsstufen (T 6).

EN ISO 12880 S2a/02.01. Charakterisierung von Schlämmen. Bestimmung des Trockenrückstandes und des Wassergehalts.

EN ISO 11348-2 L34/12.98. Bestimmung der Hemmwirkung von Wasserproben auf die Lichtemission von *Vibrio fischeri* (Leuchtbakterientest) Teil 2: Verfahren mit flüssig getrockneten Bakterien.

Gellert, G. (2002). lims.uni-duisburg.de/ Tagungen/UAT2000/Abstracts/ Summenparameter/
Summenparameter.pdf.

Gratzer, H., Ahlf, W. (1999). Erarbeitung von Kriterien zur Ableitung von Qualitätszielen für Sedimente und Schwebstoffe. UBA-Texte 44/99:171.

Hollert, H., Braunbeck, Th. (2001). Identifizierung und Bewertung (öko-)toxikologisch belasteter Gewässer in Baden-Württemberg - Abschlussbericht. Projekt BWPLUS, Förderkennzeichen Ö 97004.

Kostka-Rick, R. (2002). Ökotoxikologische Charakterisierung von Abfällen. Literaturstudie, erstellt im Auftrag der Landesanstalt für Umweltschutz Baden-Württemberg, unveröffentlicht, 104 S.

Kristensen, P. (1992). Ecotoxicological characteristics of landfill leachate. In: Christensen, T., Cossu, R., Stegmann, R. (Eds.). Landfilling of waste: Leachate, 1st ed., p. 89-105.

OECD - Organisation for Economic Co-Operation and Development (2000). Terrestrial (Non-Target) Plant Test 208 A: Seedling Emergence and Seedling Growth Test. Proposal for updating guideline 208.

OECD - Organisation for Economic Co-Operation and Development (2001). Draft Document 218. OECD guidelines for the testing of chemicals. Proposal for a new guideline 218. Chironomid toxicity test using spiked sediment.

Traunsburger, W., Haitzer, M., Höss, S., Beier, S., Ahlf, W. und Steinberg, C. (1997). Ecotoxicological assessment of aquatic sediments with *Caenorhabditis elegans* (Nematoda) – A method for testing liquid medium and whole-sediment samples. Env. Tox. Chem. 16, 245-250.

UVM - Umwelt- und Verkehrsministerium Baden-Württemberg (2002). Zuordnung von Abfällen zu Abfallarten aus Spiegeleinträgen. Vorläufige Vollzugshinweise des Ministeriums für Umwelt und Verkehr Baden-Württemberg auf der Grundlage des Entwurfs einer Handlungshilfe des Abfalltechnikausschusses der LAGA. 28.10.2002.

Warg, G. (1987). Diskussionsbeitrag zu den Themen: Zulässiges Ammonium in Fließgewässern. Toxizität des Ammoniaks. Zuordnung zu Güteklassen. Korrespondenz Abwasser 34:873-876.

## 9 Anhang

**Anhang I:** Orientierungswerte der vorläufigen Vollzugshinweise des Ministeriums für Umwelt und Verkehr Baden-Württemberg, Oktober 2002

|         | Parameter                                                                                                  | Schadstoffgehalte in<br>der Originalsubstanz<br>bezogen auf Trocken-<br>masse in<br>mg/kg Feststoff |
|---------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|         | Antimon, Blei, Kupfer, Nickel Selen,                                                                       | 2500                                                                                                |
|         | Arsen, Chrom (VI), Thallium, Zinn aus organischen Verbindungen                                             | 1000                                                                                                |
|         | Cadmium                                                                                                    | 100                                                                                                 |
|         | Quecksilber                                                                                                | 50                                                                                                  |
| Summe a | Quecksilber, Cadmium,                                                                                      | 100                                                                                                 |
| Summe b | Quecksilber, Cadmium, Zinn (org. Verb.), Thallium, Chrom (VI), Arsen,                                      | 1000                                                                                                |
| Summe c | Quecksilber, Cadmium, Zinn (org. Verb.), Thallium, Chrom (VI), Arsen, Selen, Nickel, Kupfer, Blei, Antimon | 2500                                                                                                |
|         | Benzol/BTEX                                                                                                | Benzol:25/BTEX:1000                                                                                 |
|         | Dioxine/FuraneTCDD_TE                                                                                      | 25                                                                                                  |
|         | Leichtflüchtige Halogenkohlenwasserstof-<br>fe(LHKW)                                                       | 25                                                                                                  |
|         | Mineralölkohlenwasserstoffe (MKW), soweit nicht nachgewiesen, dass irrelevant (z.B. Parafine)              | 4000, max. jedoch nur<br>bis zur Residualsättigung                                                  |
|         | PAK(16 nach EPA)                                                                                           | 200                                                                                                 |
|         | Benzo-a-pyren                                                                                              | 50                                                                                                  |
|         | PCB gesamt                                                                                                 | 50                                                                                                  |
|         | PCP                                                                                                        | 5                                                                                                   |
|         | Cyanide, gesamt                                                                                            | 1000                                                                                                |
|         | Beryllium                                                                                                  | 1000                                                                                                |

Tab. la: abgeleitete Orientierungswerte der vorläufigen Vollzugshinweise (Okt. 2002) für Feststoffgehalte

| Parameter                   | Wert mg/l |
|-----------------------------|-----------|
| pH-Wert                     | 5,5-13,0  |
| Phenole                     | 50        |
| Arsen                       | 0,5       |
| Blei                        | 1         |
| Cadmium                     | 0,1       |
| Chrom (VI)                  | 0,1       |
| Kupfer                      | 5         |
| Nickel                      | 1         |
| Quecksilber                 | 0,02      |
| Fluorid                     | 25        |
| Ammoniumstickstoff          | 200       |
| Cyanide, leicht freisetzbar | 0,5       |
| AOX                         | 1,5       |

Tab. lb: abgeleitete Orientierungswerte der vorläufigen Vollzugshinweise (Okt. 2002) für Eluate

Anhang II: Datenblätter - Biologische Testergebnisse und chemische Analytik

Median: Mittlerer Wert aus i. d. R. mindestens zwei Untersuchungen

n. b.: nicht bestimmt

%Hemmung: Wirkung des im Testansatz größtmöglichen Probenanteils

EC: Effective Concentration - die EC ist die Konzentration, bei der ein bestimmter

Prozentsatz der Testorganismen innerhalb eines vorgegebenen Zeitraums den

untersuchten Effekt aufweisen

EC<sub>10/20/</sub>: Prozentualer Probenanteil, bei der keine toxische Wirkung (10% bzw. 20%ige

Wirkschwelle) mehr nachgewiesen wird

G-Wert: Verdünnungsstufe, bei der keine toxische Wirkung mehr nachgewiesen wird

GEU: G-Wert unterhalb der Induktionsrate von 1,5

IR: Induktionsrate

S9: metabolische Aktivierung

VD: Verdünnungsstufe

<: unterhalb der Nachweisgrenze

#### Datenblatt Probe Nr. 1

Abfälle aus HZVA und Entfernung von Farben und Lacken - wässrige Schlämme, die Farben oder Lacke mit organischen Lösemitteln oder andere gefährliche Stoffe enthalten

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 1       | 080115 | 27.06.2002 |

#### Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | >10                   | -                       | -                       | ja        |
| 100        | 80000                 | 0,0013                  | 0,0025                  | ja        |
| 100        | 80000                 | 0,0016                  | 0,0029                  | ja        |
| Median     | 80000                 | 0,0014                  | 0,0027                  | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | >10000                | -                       | -                       | -                       | ja        |
| 100        | 20000                 | 0,003                   | 0,005                   | 0,014                   | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 20000                 | 0,003                   | 0,005                   | 0,014                   | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 6400                  | 0,0265                  | 0,0469                  | ja        |
| 100        | 6400                  | 0,0288                  | 0,0489                  | ja        |
|            |                       |                         |                         |           |
| Median     | 6400                  | 0,0276                  | 0,0479                  | ja        |

Bakterienkontakttest - Gesamtprobe

| 50%-Probe  | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| -          | >1000                 | ja        |
|            |                       |           |
|            |                       |           |
| Median     | >1000                 | ja        |

Pflanzentest - Gesamtprobe

|                                        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|----------------------------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica                               | 256                     | 64                                  | 256                           | ja        |
|                                        |                         |                                     |                               |           |
| Lycopersicon                           | 1024                    | 256                                 | 1024                          | ja        |
|                                        |                         |                                     |                               |           |
| Avena                                  | 1024                    | 256                                 | 1024                          | ja        |
| repräsentativster G <sub>P</sub> -Wert |                         |                                     |                               | 1024      |

|--|

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | =        | 1,67     | nein         |        | -        | 1,67     | nein         |
|        | -        | 1,67     | nein         |        | 3072     | 0,0003   | ja           |
|        | -        | 1,67     | nein         |        | 6140     | 0,0002   | ja           |
| Median |          | 1,67     | nein         | Median | 4606     | 0,0003   | ja           |

#### Datenblatt Probe Nr. 1

Abfälle aus HZVA und Entfernung von Farben und Lacken - wässrige Schlämme, die Farben oder Lacke mit organischen Lösemitteln oder andere gefährliche Stoffe enthalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 1       | 080115 | 27.06.2002 |

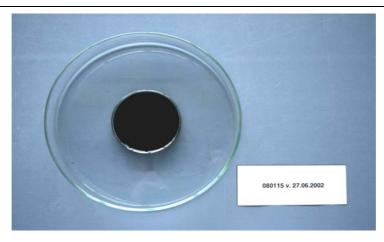
#### **Chemische Charakterisierung**

Feststoff=flüssige Probe

| Trockengewicht | Wassergehalt % | pН   | LF µS/cm |
|----------------|----------------|------|----------|
| 0              | 100            | 6,05 | 2090     |

| Arsen    | Blei       | Cadmium          | Chrom | Kupfer | Nickel | Quecksilber | Zink  |
|----------|------------|------------------|-------|--------|--------|-------------|-------|
| mg/kg    | mg/kg      | mg/kg            | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,27     | 4,9        | 0,05             | 4,8   | 49     | 5      | 0           | 290   |
|          |            |                  |       |        |        |             |       |
| Kohlenwa | sserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
| Ge       | w.%        | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,0      | 041        | 5,4              | 59,8  | <0,01  | 0,3    | 4,6         | 29    |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 33,9       | 40         | 0,3        | <0,1         | 0,83    | 2,1         | <0,1      | 0,67        |


| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| 2,8   | 0,33             | 1,2     | 0,56                | <0,1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| 0,12                | 0,19              | 0,1                   | 0,1           | 420   |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| 9,8                    | 49,3               |

#### Bemerkungen

flüssig, schwarz, Geruch nach Lösungsmittel, bis 1:1000 gefärbt; keine Eluatherstellung, sondern direkt getestet, nur glasfaserfiltriert



| Datenblatt Probe Nr. 2                                                       |         |        |            |
|------------------------------------------------------------------------------|---------|--------|------------|
| Abfälle aus der chemischen Oberflächenbearbeitung und Beschichtung von       | lfd Nr. | EAV    | Datum      |
| Metallen und anderen Werkstoffen -Schlämme und Filterkuchen, die gefährliche | 2       | 110109 | 16.05.2002 |

#### Ökotoxikologische Charakterisierung

Algentest - Eluat

Stoffe enthalten;

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 86.9       | >4                    | -                       | -                       | ja        |
| -27        | 1.25                  | -                       | -                       | nein      |
| -65.2      | 1.25                  | -                       | -                       | nein      |
| Median     | 1.25                  | -                       | -                       | nein      |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 30         | 10                    | 6.9                     | 18.6                    | 123.0                   | ja        |
| 50         | 10                    | 6.9                     | 12.4                    | 38.0                    | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 10                    | 6.9                     | 15.5                    | 80.5                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 5.4        | 2                     | -                       | -                       | nein      |
| 6.2        | 2                     | -                       | -                       | nein      |
|            |                       |                         |                         |           |
| Median     | 2                     | -                       | -                       | nein      |

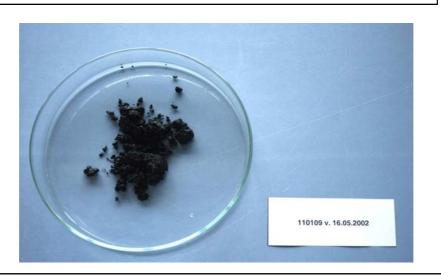
Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 92.3       | -                     | ja        |
| 103.4      | 10-100                | ja        |
|            |                       |           |
| Median     | 10-100                | ja        |

Pflanzentest - Gesamtprobe

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | >32                     | >32                                 | >32                           |           |
|                  | <64                     | <64                                 | 64                            | ja        |
| Lycopersicon     | >32                     | 32                                  | 32                            | ja        |
|                  | -                       | <64                                 | <64                           | ja        |
| Avena            | >32                     | >32                                 | >32                           | ja        |
|                  | <64                     | <64                                 | 128                           | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 32        |

ımu-Test - Eluat ohne S9


| umu-Test - Eluat ohne S9 |          |          | umu-Test - Eluat mit S9 |        |          |          |              |
|--------------------------|----------|----------|-------------------------|--------|----------|----------|--------------|
|                          | GEU      | VD       | Gentoxizität            |        | GEU      | VD       | Gentoxizität |
|                          | IR < 1,5 | IR < 1,5 | GEU > 1,5               |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|                          | 1.5      | 0.67     | nein                    |        | 1.5      | 0.67     | nein         |
|                          | 1.5      | 0.67     | nein                    |        | 1.5      | 0.67     | nein         |
|                          |          |          |                         |        |          |          |              |
| Median                   | 1.5      | 0.67     | nein                    | Median | 1.5      | 0.67     | nein         |

|                                                                                |                   |                          | Datenblatt Pr            | obe Nr. 2             |                            |                          |                        |
|--------------------------------------------------------------------------------|-------------------|--------------------------|--------------------------|-----------------------|----------------------------|--------------------------|------------------------|
| Abfälle aus der ch                                                             | nemischen Oberflä | chenbearbeitun           | a und Beschich           | tung von              | lfd Nr.                    | EAV                      | Datum                  |
| Metallen und anderen Werkstoffen -Schlämme und Filterkuchen, die gefährliche 2 |                   |                          |                          |                       |                            | 110109                   | 16.05.2002             |
| Stoffe enthalten;                                                              |                   |                          |                          | . 9                   |                            |                          |                        |
|                                                                                |                   | Chemische                | Charakterisie            | erung - Eluat         |                            |                          |                        |
| Trockengewicht                                                                 | Wassergehalt %    | pH                       | LF μS/cm                 | 1                     |                            |                          |                        |
| 39                                                                             | 61                | 9,57                     | 5140                     |                       |                            |                          |                        |
| DOC                                                                            | тос               | NH4                      | Quecksilber              | Cadmium               | Chrom,                     | Nickel                   | Kupfer                 |
| mg/l                                                                           | mg/l              | mg/L                     | μg/l                     | μg/l                  | μg/l                       | μg/l                     | μg/l                   |
| 40                                                                             | -                 | <                        | <0,5                     | <0,1                  | <0,5                       | 16,6                     | 228                    |
| Blei                                                                           | Zink              | Mangan                   | Arsen                    | Cobalt                | AOX                        |                          |                        |
| µg/l                                                                           | μg/l              | μg/l                     | μg/L                     | µg/l                  | mg/l                       |                          |                        |
| 3,37                                                                           | 42                | <5                       | <0,5                     | 2,5                   | 0,11                       |                          |                        |
| DOD 0                                                                          | 11011             | DCD 40                   | DOD 00                   | DOD 50                | DCD 404                    | DCD 420                  | DOD 450                |
| PCB 8<br>μg/l                                                                  | HCH<br>µg/l       | PCB 18<br>μg/l           | PCB 28                   | <b>PCB 52</b><br>μg/l | <b>PCB 101</b><br>μg/l     | <b>PCB 138</b><br>μg/l   | PCB 153<br>μg/l        |
| μ <u>g</u> /ι<br><                                                             | μg/i<br><         | μ <u>g</u> /ι<br><       | μ <u>g</u> /ι<br><       | μ <u>g</u> /i<br><    | μ <u>g</u> /1<br>0,007     | μ <u>g</u> /1<br>0.011   | 0,006                  |
|                                                                                | `                 |                          | `                        | `                     | 0,007                      | 0,011                    | 0,000                  |
| PCB 180                                                                        | PCB 77            | PCB 105                  | PCB 118                  | PCB 126               | PCB 169                    | PCB 189                  | •                      |
| μg/l                                                                           | μg/l              | μg/l                     | μg/l                     | μg/l                  | μg/l                       | μg/l                     |                        |
| 0,001                                                                          | <                 | <                        | <                        | <                     | <                          | <                        | :                      |
| Naphthalin                                                                     | Acenaphthylen     | Acenaphten               | Fluoren                  | Phenanthren           | Anthracen                  | Fluoranthen              | Pyren                  |
| μg/l                                                                           | μg/l              | μg/l                     | μg/l                     | μg/l                  | μg/l                       | μg/l                     | μg/l                   |
| 0,23                                                                           | 0,002             | 0,045                    | 0,023                    | 0,021                 | <                          | 0,003                    | 0,002                  |
| D (-)                                                                          | 0                 | D (l-)                   | D (I-)                   | D                     | l                          | D!!(- !-)                | D( I- I)               |
| Benzo(a)-                                                                      | Chrysen           | Benzo(b)-<br>fluoranthen | Benzo(k)-<br>fluoranthen | Benzo(a)-pyren        | Indeno(1,2,3-<br>cd)-pyren | Dibenz(a,h)-             | Benzo(g,h,i)           |
| <u>anthracen</u><br>μg/l                                                       | µg/l              | µg/l                     | µg/l                     | μg/l                  | <u>cα)-pyren</u><br>μg/l   | <b>anthracen</b><br>μg/l | <b>perylen</b><br>μg/l |
| μ <u>σ</u> /1                                                                  | 0.001             | 0.001                    | 0                        | 0.001                 | 0                          | 0.001                    | 0.001                  |
|                                                                                | 5,501             |                          | <u> </u>                 | 5,551                 |                            | 3,301                    | 5,001                  |
| Biphenyl                                                                       | Benzol            | Toluol                   | Ethylbenzol              | m-/p-Xylol            | o-Xylol                    | Dichlor-<br>methan       | 1,1-<br>Dichlorether   |
| μg/l                                                                           | μg/l              | μg/l                     | μg/l                     | μg/l                  | μg/l                       | μg/l                     | μg/l                   |
| 0,003                                                                          | <                 | 0,27                     | 0,78                     | 1,73                  | 0,84                       | <                        | <                      |
| cis-1,2-                                                                       | trans-1.2-        | Trichlor-                | 1,1,1-                   | Tetrachlor-           | 1,2-                       | Trichlorethen            | Bromdichlo             |
| Dichlorethen                                                                   | Dichlorethen      | methan                   | Trichlorethan            | methan                | 1,∠-<br>Dichlorethan       | Tricilioremen            | methan                 |
| μg/l                                                                           | µg/l              | μg/l                     | µg/l                     | µg/l                  | μg/l                       | μg/l                     | µg/l                   |
| γ <u>σ</u> ,,                                                                  | μg/1<br><         | 0,264                    | μg/·<br><                | μg/·<br><             | μ <u>g</u> /·              | μg/1                     | γg/·<br><              |
|                                                                                |                   |                          |                          |                       |                            |                          |                        |
| 1,1,2-                                                                         | Tetrachlor-ethen  | Dibromchlor-             | Tribrom-                 | 1,2-                  | 1,3-                       | 1,4-                     | KW-Index               |
| Trichlorethan                                                                  | 116.11            | methan                   | methan                   | Dichlorbenzol         | Dichlorbenzol              | Dichlorbenzol            | (H53)                  |
| μg/l<br><                                                                      | μg/l<br><         | μg/l<br><                | μg/l<br><                | μg/l<br><             | μg/l<br><                  | μg/l<br><                | mg/l<br>-              |
|                                                                                | `                 |                          | `                        | `                     | `                          | `                        |                        |

| fälle aus der chemischen Oberflächenbearbeitung und Beschichtung von |                  |                  |                   |              | Ifd Nr.      | EAV           | Datum      |
|----------------------------------------------------------------------|------------------|------------------|-------------------|--------------|--------------|---------------|------------|
| allen und and                                                        | eren Werkstoffen | -Schlämme und F  | Filterkuchen, die | gefährliche  | 2            | 110109        | 16.05.2002 |
|                                                                      |                  | Chemische C      | harakterisieru    | ng Feststoff |              |               |            |
| Arsen                                                                | Blei             | Cadmium          | Chrom             | Kupfer       | Nickel       | Quecksilber   | Zink       |
| mg/kg                                                                | mg/kg            | mg/kg            | mg/kg             | mg/kg        | mg/kg        | mg/kg         | mg/kg      |
| 16                                                                   | 230              | 0,29             | 36                | 145200       | 120          | 0,06          | 650        |
| Kohlenwa                                                             | sserstoffe       | lipophile Stoffe | TOC               | Benzol       | Toluol       | Ethylbenzol   | Xylol      |
| GEW.%                                                                |                  | Gew.%            | Gew.%             | mg/kg        | mg/kg        | mg/kg         | mg/kg      |
|                                                                      | 006              | 0,016            | 2,5               | <0,01        | <0,01        | <0,01         | 0,03       |
| umme BTEX                                                            | Naphthalin       | Acenaphten       | Acenaphtylen      | Fluoren      | Phenanthren  | Anthracen     | Fluoranthe |
| mg/kg                                                                | mg/kg            | mg/kg            | mg/kg             | mg/kg        | mg/kg        | mg/kg         | mg/kg      |
| <0,04                                                                | 0,1              | <0,1             | <0,1              | <0,1         | <0,1         | <0,1          | 0,47       |
| Pyren                                                                | Benz(a)a         | nthracen         | Chrysen           | Benzo(h)     | fluoranthen  | Benzo(k)fl    | uoranthen  |
| mg/kg                                                                | . ,              |                  | mg/kg             |              | g/kg         | mg            |            |
| <0,1                                                                 |                  |                  | <0,1              |              | :0,1         | <0            |            |
| Dibenz(ah                                                            | )anthracen       | Benzo(gh         | i)nervlen         | Indeno(1 :   | 2,3-cd)pyren | Benzo(a)pyren | AOX        |
| mg/kg                                                                |                  |                  | mg/kg             |              | mg/kg        |               | mg/kg      |
| <0,1                                                                 |                  | <0,1             |                   | <0,1         |              | mg/kg<br><0,1 | 96         |

#### Bemerkungen

pastös-granulär, feucht, schwarz,



| Datenblatt Probe Nr. 3                                                              |         |        |            |
|-------------------------------------------------------------------------------------|---------|--------|------------|
| Abfälle aus HZVA und Entfernung von Farben und Lacken - wässrige Schlämme,          | lfd Nr. | EAV    | Datum      |
| die Farben oder Lacke enthalten , mit Ausnahme derjenigen, die unter 080115 fallen. | 3       | 080116 | 21.06.2002 |
|                                                                                     | 8       | •      | •          |

#### Ökotoxikologische Charakterisierung

#### Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 99.8       | >4                    | -                       | -                       | ja        |
| 100        | 8                     | 15.7                    | 19.2                    | ja        |
| 100        | 8                     | 18.4                    | 21.3                    | ja        |
| Median     | 8                     | 17.1                    | 20.3                    | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 10                    | 16.7                    | 20.4                    | 30.1                    | ja        |
| 100        | 2                     | 35.1                    | 39.6                    | 50.2                    | ja        |
| Median     | 6                     | 25.9                    | 30.0                    | 40.2                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 64.8       | 16                    | 9.9                     | 29.6                    | ja        |
| 54.2       | 8                     | 16.5                    | 41.9                    | ja        |
| Median     | 12                    | 13.2                    | 35.7                    | ja        |

Bakterienkontakttest - Gesamtprobe

| G <sub>B</sub> -Probe | Toxizität |
|-----------------------|-----------|
|                       |           |
| 2-10                  | ja        |
|                       |           |
|                       |           |
| 2-10                  | ja        |
|                       | 2-10      |

Pflanzentest - Gesamtprobe

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |  |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|--|
| Brassica         | >32                     | -                                   | -                             | ja        |  |
|                  | <64                     | 256                                 | 512                           | ja        |  |
| Lycopersicon     | >32                     | -                                   | -                             | ja        |  |
|                  | <64                     | 512                                 | -                             | ja        |  |
| Avena            | -                       | -                                   | -                             | -         |  |
|                  | 64                      | <64                                 | 257                           | ja        |  |
| repräsentativste | r G <sub>P</sub> -Wert  |                                     |                               | 512       |  |

umu-Test Eluat ohne S9

|--|

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1.5      | 0.67     | nein         |        | 1.5      | 0.67     | nein         |
|        | 1.5      | 0.67     | nein         |        | 1.5      | 0.67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1.5      | 0.67     | nein         | Median | 1.5      | 0.67     | nein         |

|                   |                    |                 | Datenblatt       | Probe Nr. 3                                     |               |                |                      |
|-------------------|--------------------|-----------------|------------------|-------------------------------------------------|---------------|----------------|----------------------|
| Abfälle aus HZVA  | und Entfernung v   | on Farben und L | acken - wässri   | ge Schlämme,                                    | lfd Nr.       | EAV            | Datum                |
| lie Farben oder L | acke enthalten , m | it Ausnahme de  | rjenigen, die ur | nter 080115 fallen.                             | 3             | 080116         | 21.06.2002           |
|                   |                    | Chemis          | sche Charakte    | erisierung - Eluat                              | •             | •              |                      |
| Trockengewicht    | Wassergehalt %     | рН              | LF μS/cm         |                                                 |               |                |                      |
| 94.3              | 5.7                | 8.42            | 3490             |                                                 |               |                |                      |
| DOC               | TOC                | NH4             | Quecksilber      | Cadmium                                         | Chrom.        | Nickel         | Kupfer               |
| mg/l              | mg/l               | mg/L            | µg/l             | µg/l                                            | μg/l          | µg/l           | µg/l                 |
| 7.9               | - Ing/i            | 11              | μg/i<br>-        |                                                 | <0.5          | 1.4            | 17.5                 |
| 7.0               |                    |                 |                  | -0,1                                            | .0,0          | 1              | 17.0                 |
| Blei              | Zink               | Mangan          | Arsen            | Cobalt                                          | AOX           | ]              |                      |
| μg/l              | μg/l               | μg/l            | μg/L             | μg/l                                            | mg/l          |                |                      |
| 3.07              | 889                | <5              | <0,5             | 42.7                                            | 0.03          |                |                      |
|                   |                    |                 |                  |                                                 |               |                |                      |
| PCB 8             | HCH                | PCB 18          | PCB 28           | PCB 52                                          | PCB 101       | PCB 138        | PCB 153              |
| μg/l              | μg/l               | μg/l            | μg/l             | μg/l                                            | μg/l          | μg/l           | μg/l                 |
| <                 | <                  | <               | <                | 0.004                                           | 0.012         | 0.026          | 0.012                |
|                   |                    |                 |                  |                                                 | T             |                |                      |
| PCB 180           | PCB 77             | PCB 105         | PCB 118          | PCB 126                                         | PCB 169       | PCB 189        |                      |
| μg/l              | μg/l               | μg/l            | μg/l             | μg/l                                            | μg/l          | μg/l           |                      |
| 0.002             | <                  | 0.002           | <                | <                                               | <             | <              |                      |
| Naphthalin        | Acenaphthylen      | Acenaphten      | Fluoren          | Phenanthren                                     | Anthracen     | Fluoranthen    | Pyren                |
| µg/l              | µg/l               | µg/l            | µg/l             | µg/l                                            | µg/l          | µg/l           | µg/l                 |
| n.b.              | n.b.               | n.b.            | n.b.             | n.b.                                            | n.b.          | 0.009          | 0.008                |
| 11.0.             | 11.0.              | 11.0.           | 11.0.            | 11.0.                                           | 11.0.         | 0.000          | 0.000                |
| Benzo(a)-         | Chrysen            | Benzo(b)-       | Benzo(k)-        | Benzo(a)-pyren                                  | Indeno(1,2,3- | Dibenz(a,h)-   | Benzo(g,h,i)-        |
| anthracen         | J, 50              | fluoranthen     | fluoranthen      | (a, pj.o                                        | cd)-pyren     | anthracen      | perylen              |
| µg/l              | μq/l               | µq/l            | μg/l             | μg/l                                            | μg/l          | µg/l           | µq/l                 |
| 0.001             | 0.002              | 0.001           | 0                | 0.002                                           | 0             | <              | 0.001                |
|                   | •                  |                 |                  |                                                 |               |                |                      |
| Biphenyl          | Benzol             | Toluol          | Ethylbenzol      | m-/p-Xylol                                      | o-Xylol       | Dichlor-methan | 1,1-<br>Dichlorethen |
| μg/l              | μg/l               | μg/l            | μg/l             | μg/l                                            | μg/l          | μg/l           | μg/l                 |
| n.b.              | 1.04               | 3.03            | 0.59             | 2.22                                            | 1.1           | <              | <                    |
|                   |                    |                 |                  |                                                 | 1             |                |                      |
| cis-1,2-          | trans-1,2-         | Trichlor-       | 1,1,1-           | Tetrachlor-methan                               | 1,2-          | Trichlorethen  | Bromdichlor          |
| Dichlorethen      | Dichlorethen       | methan          | Trichlorethan    |                                                 | Dichlorethan  |                | methan               |
| μg/l<br><         | μg/l<br><          | μg/l<br>0.1     | μg/l<br><        | μg/l<br><                                       | μg/l<br><     | μg/l<br><      | μg/l<br><            |
|                   | ` `                | 0.1             | `                | ` `                                             |               | `              | `                    |
| 1,1,2-            | Tetrachlor-ethen   | Dibromchlor-    | Tribrom-         | 1,2-Dichlorbenzol                               | 1,3-          | 1,4-           | KW-Index             |
| Trichlorethan     |                    | methan          | methan           | ,= = ::::: <b>:::::::::::::::::::::::::::::</b> | Dichlorbenzol |                | (H53)                |
| μg/l              | μg/l               | μg/l            | μg/l             | μg/l                                            | µg/l          | µg/l           | mg/l                 |
| <                 | <                  | <               | <                | <                                               | <             | <              |                      |

|                 |                     |                  | Datenblatt F     | Probe Nr. 3       |             |               |             |
|-----------------|---------------------|------------------|------------------|-------------------|-------------|---------------|-------------|
| Abfälle aus HZV | und Entfernung      | von Farben und L | acken - wässrige | e Schlämme,       | lfd Nr.     | EAV           | Datum       |
|                 | Lacke enthalten , i |                  | •                |                   | 3           | 080116        | 21.06.2002  |
|                 |                     |                  |                  | erisierung - Fest | stoff       | •             | •           |
| Arsen           | Blei                | Cadmium          | Chrom            | Kupfer            | Nickel      | Quecksilber   | Zink        |
| mg/kg           | mg/kg               | mg/kg            | mg/kg            | mg/kg             | mg/kg       | mg/kg         | mg/kg       |
| 0.52            | 1.6                 | 0.18             | 5.6              | 11                | 3.6         | <0.05         | 135600      |
|                 | •                   | •                |                  |                   |             | ,             | •           |
| Kohlenwa        | asserstoffe         | lipophile Stoffe | TOC              | Benzol            | Toluol      | Ethylbenzol   | Xylol       |
| GE              | :W.%                | Gew.%            | Gew.%            | mg/kg             | mg/kg       | mg/kg         | mg/kg       |
| 0.              | 009                 | 0.17             | 5.2              | <0,01             | <0,01       | 0.09          | 0.38        |
|                 |                     | •                |                  | ·                 |             |               |             |
| Summe BTEX      | Naphthalin          | Acenaphten       | Acenaphtylen     | Fluoren           | Phenanthren | Anthracen     | Fluoranthen |
| mg/kg           | mg/kg               | mg/kg            | mg/kg            | mg/kg             | mg/kg       | mg/kg         | mg/kg       |
| 0.47            | 1.7                 | <0,1             | <0,1             | <0,1              | 0.29        | <0,1          | 0.1         |
|                 | •                   |                  |                  | ·                 |             |               | •           |
| Pyren           | Benz(a)a            | nthracen         | Chrysen          | Benzo(b)flu       | ioranthen   | Benzo(k)fl    | uoranthen   |
| mg/kg           | mg                  | ı/kg             | mg/kg            | mg/               | kg          | mg            | /kg         |
| <0,1            | <(                  | ),1              | <0,1             | <0,               | 1           | <0            | ),1         |
| ·               |                     |                  |                  |                   |             |               |             |
| Dibenz(al       | n)anthracen         | Benzo(gh         | i)perylen        | Indeno(1,2,3      | 3-cd)pyren  | Benzo(a)pyren | AOX         |
| m               | g/kg                | mg               | /kg              | mg/               | kg          | mg/kg         | mg/kg       |
| <               | 0,1                 | <0               | ),1              | 0.1               | 1           | 0.1           | <1          |
|                 |                     | •                |                  |                   |             | •             | •           |
| Wasserlös       | licher Anteil       | Summe PA         | K (16 EPA)       |                   |             |               |             |
|                 | NA 0/               | mg               | /ka              |                   |             |               |             |
| Ge              | W. 70               | IIIg             | /kg              |                   |             |               |             |

#### <u>Bemerkungen</u>

fest-klumpig, grau; Geruch nach Kreide



| Datenblatt Probe Nr. 4 |  |
|------------------------|--|
|                        |  |

Abfälle aus HZVA und Entfernung von Farben und Lacken - Farb- und Lackschlämme, die organische Lösemittel oder andere Stoffe enthalten.

4 080113 21.06.2002

#### Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 99,6       | >4                    | -                       | -                       | ja        |
| 100        | 40                    | 5,1                     | 6,6                     | ja        |
| 100        | 40                    | 5,1                     | 6,7                     | ja        |
| Median     | 40                    | 5,1                     | 6,7                     | ja        |

Daphnientest - Eluat

|            | uut                   |                         |                         |                         |           |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 5                     | 16,2                    | 19,9                    | 29,4                    | ja        |
| 100        | 5                     | 34,0                    | 38,4                    | 48,4                    | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 5                     | 25,1                    | 29,1                    | 38,9                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 47,3       | 8                     | 17,1                    | 51,8                    | ja        |
| 34,4       | 4                     | 27,5                    | 73,8                    | ja        |
|            |                       |                         |                         |           |
| Median     | 6                     | 22,3                    | 62,8                    | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| -          | 10-100                | ja        |
|            |                       |           |
|            |                       |           |
| Median     | 10-100                | ja        |

Pflanzentest - Gesamtprobe

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | 64                      | 128                                 | 64                            | ja        |
|                  | >2048                   | 512                                 | 512                           | ja        |
| Lycopersicon     | >128                    | 32                                  | 32                            | ja        |
|                  | >2048                   | >2048                               | 2048                          | ja        |
| Avena            | 32                      | 32                                  | 32                            | ja        |
|                  | <128                    | 256                                 | 256                           | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 32        |

#### umu-Test Eluat ohne S9

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 1,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 1,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 1,67     | nein         |        |          |          |              |
| Median | 1.5      | 1.67     | nein         | Median | 1.5      | 0.67     | nein         |

Eluat mit S9

|                  |                    |                 | Datenblatt P     | robe Nr. 4      |               |               |                |
|------------------|--------------------|-----------------|------------------|-----------------|---------------|---------------|----------------|
| Abfälle aus HZVA | und Entfernung vor | n Farben und La | cken - Farb- und | Lack-           | lfd Nr.       | EAV           | Datum          |
|                  | anische Lösemittel |                 |                  |                 | 4             | 080113        | 21.06.2002     |
|                  | ,                  |                 |                  | erisieruna - El | 4             |               | •              |
|                  |                    | Chemi           | sche Charakt     | erisierung - Ei | uat           |               |                |
| Trockengewicht   | Wassergehalt %     | рН              | LF µS/cm         |                 |               |               |                |
| 68               | 32                 | 7,21            | 665              |                 |               |               |                |
| DOC              | TOC                | NH4             | Quecksilber      | Cadmium         | Chrom.        | Nickel        | Kupfer         |
| mg/l             | mg/l               | mg/L            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l           |
| 74               | g                  | 42              | 5.9              | <0.1            | <0.5          | 13,6          | 9,1            |
|                  |                    |                 | 0,0              | ٥,٠             | 0,0           | .0,0          | 0,.            |
| Blei             | Zink               | Mangan          | Arsen            | Cobalt          | AOX           | ]             |                |
| μg/l             | μg/l               | ua/l            | μg/L             | μg/l            | mg/l          | 1             |                |
| 3,5              | 10100              | 220             | <0,5             | 158             | 0,02          | 1             |                |
| ,                |                    |                 | ,                |                 | ,             | •             |                |
| PCB 8            | HCH                | PCB 18          | PCB 28           | PCB 52          | PCB 101       | PCB 138       | PCB 153        |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l           |
| -                | <                  | <               | <                | 0,01            | 0,028         | 0,064         | 0,035          |
|                  |                    |                 |                  |                 |               | -             |                |
| PCB 180          | PCB 77             | PCB 105         | PCB 118          | PCB 126         | PCB 169       | PCB 189       |                |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          |                |
| 0,005            |                    | <               | <                | -               | -             | -             |                |
|                  |                    |                 |                  |                 |               |               |                |
| Naphthalin       | Acenaphthylen      | Acenaphten      | Fluoren          | Phenanthren     | Anthracen     | Fluoranthen   | Pyren          |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l           |
| 2,02             | <                  | <               | 0,008            | 0,014           | <             | 0,01          | 0,012          |
|                  | l a                | 5 "             |                  | <b>.</b>        |               | l su / 15     |                |
| Benzo(a)-        | Chrysen            | Benzo(b)-       | Benzo(k)-        | Benzo(a)-pyren  | Indeno(1,2,3- | Dibenz(a,h)-  | Benzo(g,h,i)-  |
| anthracen        |                    | fluoranthen     | fluoranthen      |                 | cd)-pyren     | anthracen     | perylen        |
| μg/l             | μg/l<br><          | µg/l            | μg/l             | μg/l            | μg/l<br><     | μg/l          | μg/l           |
| 0,002            | <                  | 0,004           | <                | <               | <             | <             | <              |
| Biphenyl         | Benzol             | Toluol          | Ethylbenzol      | m-/p-Xylol      | o-Xylol       | Dichlormethan | 1.1-           |
| Diplielly        | Delizoi            | Toluoi          | Lillyibelizoi    | III-/p-Ayloi    | U-Aylui       | Dicinormethan | Dichlorethen   |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | µg/l           |
| 0,012            | μ9/1               | 2               | ~ 100            | ~ 450           | ~ 220         | μg/1          | μ <u>γ</u> γ/1 |
| 0,012            | ,                  |                 | 100              | 700             | 220           |               |                |
| cis-1,2-         | trans-1,2-         | Trichlor-       | 1,1,1 -          | Tetrachlor-     | 1,2-          | Trichlorethen | Bromdichlor    |
| Dichlorethen     | Dichlorethen       | methan          | Trichlorethan    | methan          | Diclorethan   |               | methan         |
| μg/l             | µg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | µg/l           |
| <u> </u>         | γ9/1               | <u>μ</u> 9/1    | γ9/1             | κ9/1            | γ9/1          | γ9/1          | <              |
|                  |                    |                 |                  |                 |               |               |                |
| 1,1,2-           | Tetrachlor-ethen   | Dibromchlor-    | Tribrom-         | 1,2-            | 1,3-          | 1,4-          | KW-Index       |
| Trichlorethan    |                    | methan          | methan           | Dichlorbenzol   | Dichlorbenzol |               | (H53)          |
| μg/l             | μg/l               | μg/l            | μg/l             | µg/l            | μg/l          | μg/l          | mg/l           |
| μg/i             |                    |                 |                  |                 |               |               |                |

|                                       |                          |                  | Datenblatt Pr      | obe Nr. 4     |              |                 |              |
|---------------------------------------|--------------------------|------------------|--------------------|---------------|--------------|-----------------|--------------|
| Abfälle aus HZVA                      | und Entfernung v         | on Farben und La | cken - Farb- und I | _ack-         | lfd Nr.      | EAV             | Datum        |
| schlämme, die org                     | •                        |                  |                    |               | 4            | 080113          | 21.06.2002   |
| , , , , , , , , , , , , , , , , , , , |                          |                  | che Charakteri     | sierung - Fe  | ststoff      | •               |              |
| Arsen                                 | Blei                     | Cadmium          | Chrom              | Kupfer        | Nickel       | Quecksilber     | Zink         |
| mg/kg                                 | mg/kg                    | mg/kg            | mg/kg              | mg/kg         | mg/kg        | mg/kg           | mg/kg        |
| 1,7                                   | 9,9                      | 0,37             | 3,2                | 170           | 1,9          | <0.05           | 21600        |
|                                       |                          |                  |                    |               |              |                 |              |
| Kohlenwa                              | sserstoffe               | lipophile Stoffe | TOC                | Benzol        | Toluol       | Ethylbenzol     | Xylol        |
| GEV                                   | V.%                      | Gew.%            | Gew.%              | mg/kg         | mg/kg        | mg/kg           | mg/kg        |
| 9,                                    | 9,3 7,4                  |                  | 29,4               | 0,02          | 0,27         | 47              | 230          |
|                                       |                          |                  |                    |               | <u> </u>     |                 |              |
| Summe BTEX                            | Naphthalin               | Acenaphten       | Acenaphtylen       | Fluoren       | Phenanthren  | Anthracen       | Fluoranthen  |
| mg/kg                                 | mg/kg                    | mg/kg            | mg/kg              | mg/kg         | mg/kg        | mg/kg           | mg/kg        |
| 277                                   | 16                       | <0,1             | <0,1               | <0,1          | 0,29         | <0,1            | <0,1         |
| Pyren                                 | Benz(a)a                 | anthracen        | Chrysen            | Benzo(b)      | fluoranthen  | Benzo(k)flu     | ıoranthen    |
| mg/kg                                 |                          | g/kg             | mg/kg              | mg/kg         |              | mg/kg           |              |
| <0,1                                  |                          | 0,1              | <0,1               |               | <0,1         | <0,             |              |
| Dibenz(ah)                            | anthropen                | Bonzo/ak         | si)namdan          | Indona/4      | 2,3-cd)pyren | Donas (a) numan | AOX          |
|                                       |                          |                  | ni)perylen         | , ,           | , ,,,,       | Benzo(a)pyren   | _            |
|                                       | mg/kg mg/kg<br><0,1 <0,1 |                  |                    | mg/kg<br><0.1 |              | mg/kg<br><0.1   | mg/kg<br>430 |
|                                       | ', 1                     |                  | 7, 1               |               | ·U, I        | <b>~</b> U, I   | 430          |
| Wasserlösli                           | icher Anteil             | Summe PA         | K (16 EPA)         |               |              |                 |              |
| Gev                                   | v.%                      | mg               | /kg                |               |              |                 |              |
| 0,                                    | 5                        | 16               | 5,7                |               |              |                 |              |

#### <u>Bemerkungen</u>

fest-pastös, grau, Geruch nach Ammoniak



| Datenblatt Probe Nr. 6                                                |         |        |            |
|-----------------------------------------------------------------------|---------|--------|------------|
| Abfälle vom Gießen von Nichteisenmetallen; Gießformen und -sande nach | lfd Nr. | EAV    | Datum      |
| dem Gießen mit Ausnahme derjenigen, die unter 101007 fallen.          | 6       | 101008 | 11.07.2002 |

## Ökotoxikologische Charakterisierung

#### Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 80                    | 3,1                     | 15,7                    | ja        |
| 100        | 80                    | 2,3                     | 9,9                     | ja        |
|            |                       |                         |                         |           |
| Median     | 80                    | 2,7                     | 12,8                    | ja        |

Daphnientest - Eluat

| - 40       |                       |                         |                         |                         |           |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 0          | 1                     | -                       | -                       | -                       | nein      |
| 0          | 1                     | -                       | -                       | -                       | nein      |
|            |                       |                         |                         |                         |           |
| Median     | 1                     | -                       | -                       | -                       | nein      |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 68,8       | 16                    | 7,9                     | 24,8                    | ja        |
| 66,3       | 16                    | 7,1                     | 26,8                    | ja        |
|            |                       |                         |                         |           |
| Median     | 16                    | 7,5                     | 25,8                    | ja        |

Bakterienkontakttest - Gesamtprobe

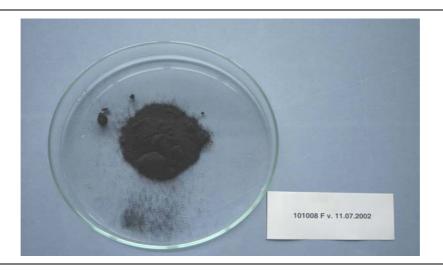
| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 94,1       | 10-100                | ja        |
|            |                       |           |
|            |                       |           |
| Median     | 10-100                | ja        |
|            |                       |           |

Pflanzentest - Gesamtprobe

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | -                       | -                                   | -                             |           |
|                  | 2                       | 2                                   | 2                             | nein      |
| Lycopersicon     | -                       | -                                   | -                             |           |
|                  | 4                       | 2                                   | 2                             | ja        |
| Avena            | -                       | -                                   | -                             |           |
|                  | 2                       | 2                                   | 32                            | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 2         |

# umu-Test Eluat ohn

| uat ohne S9 Eluat mit |
|-----------------------|
|-----------------------|


| Eluat ohne S9 |                            |          |           | Eluat mit S9 |          |          |           |  |
|---------------|----------------------------|----------|-----------|--------------|----------|----------|-----------|--|
|               | GEU VD Gentoxizität GEU VD |          |           |              |          |          |           |  |
|               | IR < 1,5                   | IR < 1,5 | GEU > 1,5 |              | IR < 1,5 | IR < 1,5 | GEU > 1,5 |  |
|               | 1,5                        | 0,67     | nein      |              | 1,5      | 0,67     | nein      |  |
|               | 3                          | 0,33     | ja        |              | 1,5      | 0,67     | nein      |  |
|               | 1,5                        | 0,67     | nein      |              | 1,5      | 0,67     | nein      |  |
| Median        | 1,5                        | 0,67     | nein      | Median       | 1,5      | 0,67     | nein      |  |

|                   |                                       |                   | Datenblatt P     | robe Nr. 6      |               |                |                      |
|-------------------|---------------------------------------|-------------------|------------------|-----------------|---------------|----------------|----------------------|
| Abfälle vom Gieße | n von Nichteisenm                     | etallen; Gießform | nen und -sande r | nach            | Ifd Nr.       | EAV            | Datum                |
| dem Gießen mit A  | usnahme derjenige                     | n, die unter 1010 | 007 fallen.      |                 | 6             | 101008         | 11.07.2002           |
|                   |                                       | <u> </u>          |                  |                 |               |                |                      |
|                   |                                       | Chemis            | sche Charakt     | erisierung - El | uat           |                |                      |
| Trockengewicht    | Wassergehalt %                        | pН                | LF μS/cm         |                 |               |                |                      |
| 96,7              | 3,27                                  | 7                 | 439              |                 |               |                |                      |
| DOC               | TOC                                   | NH4               | Quecksilber      | Cadmium         | Chrom,        | Nickel         | Kupfer               |
| mg/l              | mg/l                                  | mg/L              | μg/l             | μg/l            | μg/l          | μg/l           | μg/l                 |
| 85                | -                                     | 1,4               | 0,1              | 1               | 95,2          | 87,7           | 189                  |
| Blei              | Zink                                  | Mangan            | Arsen            | Cobalt          | AOX           | 1              |                      |
| ua/l              | µg/l                                  | ug/l              | µg/L             | ug/l            | mg/l          | 1              |                      |
| 36                | 1280                                  | 1420              | 2.3              | 43.4            | 0,05          | 1              |                      |
|                   | 1200                                  | 1120              | 2,0              | 10, 1           | 0,00          | 1              |                      |
| PCB 8             | HCH                                   | PCB 18            | PCB 28           | PCB 52          | PCB 101       | PCB 138        | PCB 153              |
| μg/l              | μg/l                                  | μg/l              | μg/l             | μg/l            | μg/l          | μg/l           | μg/l                 |
| <                 | <                                     | <                 | <                | 0,012           | 0,043         | 0,093          | 0,048                |
|                   |                                       |                   |                  |                 |               |                | •                    |
| PCB 180           | PCB 77                                | PCB 105           | PCB 118          | PCB 126         | PCB 169       | PCB 189        |                      |
| μg/l              | μg/l                                  | μg/l              | μg/l             | μg/l            | μg/l          | μg/l           |                      |
| 0,007             | <                                     | 0,007             | <                | <               | <             | <              |                      |
| Naphthalin        | Acenaphthylen                         | Acenaphten        | Fluoren          | Phenanthren     | Anthracen     | Fluoranthen    | Pyren                |
| μg/l              | μg/l                                  | µg/l              | μq/l             | µg/l            | μg/l          | μg/l           | μg/l                 |
| 10                | 0,23                                  | 0,27              | 0,64             | 5,1             | 0.83          | 1,2            | 1                    |
|                   | · · · · · · · · · · · · · · · · · · · | •                 | •                | •               | ,             |                |                      |
| Benzo(a)-         | Chrysen                               | Benzo(b)-         | Benzo(k)-        | Benzo(a)-pyren  | Indeno(1,2,3- | Dibenz(a,h)-   | Benzo(g,h,i)-        |
| anthracen         | -                                     | fluoranthen       | fluoranthen      |                 | cd)-pyren     | anthracen      | perylen              |
| μg/l              | μg/l                                  | μg/l              | μg/l             | μg/l            | μg/l          | μg/l           | μg/l                 |
| 0,19              | 0,72                                  | 0,03              | 0,006            | 0,011           | <             | 0,002          | 0,004                |
| District          | B1                                    | T-11              | Edualia          | / <b>V</b> ll   | - V-I-I       | Bi-li-         | 4.4                  |
| Biphenyl          | Benzol                                | Toluol            | Ethylbenzol      | m-/p-Xylol      | o-Xylol       | Dichlor-       | 1,1-<br>Dichlorethen |
| μg/l              | μg/l                                  | μg/l              | μg/l             | μg/l            | μg/l          | methan<br>μg/l | µg/l                 |
| 1.1               | 0.58                                  | 1.43              | 1,03             | 2.24            | 1,81          | μg/1           | μg/i<br><            |
| 1,1               | 0,00                                  | 1,10              | 1,00             | <b>-,-</b> 1    | 1,01          |                |                      |
| cis-1,2-          | trans-1,2-                            | Trichlor-         | 1,1,1-           | Tetrachlor-     | 1,2-          | Trichlorethen  | Bromdichlor-         |
| Dichlorethen      | Dichlorethen                          | methan            | Trichlorethan    | methan          | Dichlorethan  |                | methan               |
| μg/l              | μg/l                                  | μg/l              | μg/l             | μg/l            | μg/l          | μg/l           | μg/l                 |
| <                 | <                                     | <                 | <                | <               | <             | <              | <                    |
|                   | · · · · · · · · · · · · · · · · · · · |                   | T =              |                 | _             |                |                      |
| 1,1,2-            | Tetrachlor-ethen                      | Dibromchlor-      | Tribrom-         | 1,2-            | 1,3-          | 1,4-           | KW-Index             |
| Trichlorethan     | n                                     | methan            | methan           | Dichlorbenzol   |               | Dichlorbenzol  | (H53)                |
| μg/l              | μg/l                                  | μg/l              | μg/l             | μg/l            | μg/l          | μg/l           | mg/l                 |
| <                 | <                                     | <                 | <                | <               | <             | <              | -                    |

|                                                             |                   |                    | Datenblatt Pr    | obe Nr. 6           |              |                     |             |
|-------------------------------------------------------------|-------------------|--------------------|------------------|---------------------|--------------|---------------------|-------------|
| bfälle vom Gieße                                            | n von Nichteisenn | netallen; Gießform | - und Sande nacl | h                   | Ifd Nr.      | EAV                 | Datum       |
| em Gießen mit Ausnahme derjenigen, die unter 101007 fallen. |                   |                    |                  |                     | 6            | 101008              | 11.07.2002  |
|                                                             |                   | Chemiso            | he Charakteri    | sierung - Fe        | ststoff      |                     |             |
| Arsen                                                       | Blei              | Cadmium            | Chrom            | Kupfer              | Nickel       | Quecksilber         | Zink        |
| mg/kg                                                       | mg/kg             | mg/kg              | mg/kg            | mg/kg               | mg/kg        | mg/kg               | mg/kg       |
| 1,8                                                         | 5,2               | 0,19               | 17               | 56                  | 11           | <0,05               | 144         |
| Kohlenwa                                                    | ssarstoffa        | lipophile Stoffe   | TOC              | Benzol              | Toluol       | Ethylbenzol         | Xylol       |
| GEV                                                         |                   | Gew.%              | Gew.%            | mg/kg               | mg/kg        | mg/kg               | mg/kg       |
| 0,14                                                        |                   | 0,15               | 1,9              | 0,07                | 0,22         | 0.07                | 0.18        |
| -,                                                          |                   | 0,.0               | .,0              | 0,0.                | 0,22         | 0,0.                | 0,.0        |
| Summe BTEX                                                  | Naphthalin        | Acenaphten         | Acenaphtylen     | Fluoren             | Phenanthren  | Anthracen           | Fluoranthen |
| mg/kg                                                       | mg/kg             | mg/kg              | mg/kg            | mg/kg               | mg/kg        | mg/kg               | mg/kg       |
| 0,54                                                        | 7,8               | 0,12               | <0,1             | 0,21                | 2,4          | 0,3                 | 0,19        |
|                                                             |                   |                    |                  |                     |              |                     |             |
| Pyren                                                       |                   | nthracen           | Chrysen          | Benzo(b)fluoranthen |              | Benzo(k)fluoranthen |             |
| mg/kg                                                       |                   | J/kg               | mg/kg            |                     | ng/kg        | mg/kg               |             |
| 0,3                                                         | <(                | ),1                | 0,1              | 0,11                |              | <(                  | 0,1         |
| Dibenz(ah)                                                  | anthracen         | Benzo(gh           | i)perylen        | Indeno(1,           | 2,3-cd)pyren | Benzo(a)pyren       | AOX         |
| mg                                                          | /kg               | mg                 | /kg              | n                   | ng/kg        | mg/kg               | mg/kg       |
| <0                                                          | ,1                | <0                 | ),1              | <0,1                |              | <0,1                | 20          |
| Wasserlösl                                                  | icher Anteil      | Summe PAK (1       | 6 EPA)           | ·                   |              |                     |             |
| Gev                                                         |                   | mg                 |                  |                     |              |                     |             |
| 0.                                                          | 3                 | 11                 | 5                |                     |              |                     |             |

#### Bemerkungen

Formsand,pulvrig, rußig



#### **Datenblatt Probe Nr.7**

Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenbearbeitung von Metallen und Kunststoffen - Bearbeitungsschlämme, die gefährliche Stoffe beinhalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 7       | 120114 | 27.06.2002 |

#### Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 51,9       | 2                     | -                       | -                       | ja        |
| -78,3      | 1,25                  | -                       | -                       | nein      |
|            |                       |                         |                         |           |
| Median     | 1,6                   | -                       | -                       | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 80         | 2                     | -                       | -                       | -                       | ja        |
| 0          | 1                     | -                       | -                       | -                       | nein      |
|            |                       |                         |                         |                         |           |
| Median     | 1,5                   | -                       | -                       | -                       | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>∟</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 128                   | 1,2                     | 4,5                     | ja        |
| 100        | 64                    | 2,0                     | 6,1                     | ja        |
|            |                       |                         |                         |           |
| Median     | 96                    | 1,6                     | 5,3                     | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 78,3       |                       | ja        |
| -          | 10-100                | ja        |
|            |                       |           |
| Median     | 10-100                | ja        |

Pflanzentest - Gesamtprobe

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität     |
|------------------|-------------------------|-------------------------------------|-------------------------------|---------------|
| Brassica         | 128                     | 128                                 | 128                           | ja            |
|                  | <128                    | <128                                | 1024                          | ja            |
| Lycopersicon     | -                       | 256                                 | >256                          | ja            |
|                  | 256                     | <128                                | <128                          | ja            |
| Avena            | <16                     | 32                                  | 32                            | ja            |
|                  | >2048                   | 256                                 | <2048                         | ja            |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | nicht bestimn |

| umu-Test - Eluat ohne S9 | Eluat mit S9 |
|--------------------------|--------------|
| umu-Test - Eluat onne 59 | Eluat mit 59 |

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                              | sen der mechanisc           |                    |                              |                  | lfd Nr.       | EAV                | Datum                |
|------------------------------|-----------------------------|--------------------|------------------------------|------------------|---------------|--------------------|----------------------|
|                              | nischen Oberfläche          | •                  |                              | lunst-           | 7             | 120114             | 27.06.2002           |
| stoffen - Bearbeitu          | ngsschlämme, die g          | gefährliche Stoffe | beinhalten.                  |                  |               |                    |                      |
|                              |                             | Chemis             | sche Charakto                | erisierung - Elu | ıat           |                    |                      |
| Trockengewicht               | Wassergehalt %              | рН                 | LF μS/cm                     |                  |               |                    |                      |
| 60,9                         | 39,1                        | 7,8                | 800                          |                  |               |                    |                      |
|                              | T00                         | NIII4              | 0                            | O a desidence    | 01            | NU-L-I             | 17                   |
| DOC                          | TOC                         | NH4                | Quecksilber                  | Cadmium          | Chrom,        | Nickel             | Kupfer               |
| mg/l<br>110                  | mg/l                        | mg/L<br>0.55       | μg/l                         | μg/l<br><0.1     | μg/l<br><0.5  | μg/l<br>18.4       | µg/l                 |
| 110                          | -                           | 0,55               |                              | <0,1             | <0,5          | 18,4               | 11,2                 |
| Blei                         | Zink                        | Mangan             | Arsen                        | Cobalt           | AOX           | 1                  |                      |
| μg/l                         | μg/l                        | μg/l               | μg/L                         | μg/l             | mg/l          | 1                  |                      |
| 3,74                         | 302                         | 231                | <0.5                         | 3,7              | 0,04          | 1                  |                      |
| -,                           |                             |                    |                              | - ,              | -,-           | 4                  |                      |
| PCB 8                        | HCH                         | PCB 18             | PCB 28                       | PCB 52           | PCB 101       | PCB 138            | PCB 153              |
| μg/l                         | μg/l                        | μg/l               | μg/l                         | μg/l             | μg/l          | μg/l               | μg/l                 |
| -                            | <                           | <                  | <                            | <                | 0,009         | 0,016              | 0,01                 |
|                              |                             |                    | 1                            |                  |               |                    | •                    |
| PCB 180                      | PCB 77                      | PCB 105            | PCB 118                      | PCB 126          | PCB 169       | PCB 189            |                      |
| μg/l                         | μg/l                        | μg/l               | μg/l                         | μg/l             | μg/l          | μg/l               |                      |
| <                            | -                           | <                  | <                            | -                | -             | -                  |                      |
| Naphthalin                   | Acenaphthylen               | Acenaphten         | Fluoren                      | Phenanthren      | Anthracen     | Fluoranthen        | Pyren                |
| μg/l                         | μg/l                        | μg/l               | μg/l                         | μg/l             | μg/l          | μg/l               | μg/l                 |
| 0,381                        | 0,016                       | <                  | 0,034                        | 0,029            | · ·           | 0,019              | 0,041                |
|                              |                             |                    |                              |                  |               |                    |                      |
| Benzo(a)-                    | Chrysen                     | Benzo(b)-          | Benzo(k)-                    | Benzo(a)-pyren   | Indeno(1,2,3- | Dibenz(a,h)-       | Benzo(g,h,i)         |
| anthracen                    |                             | fluoranthen        | fluoranthen                  |                  | cd)-pyren     | anthracen          | perylen              |
| μg/l                         | μg/l                        | μg/l               | μg/l                         | μg/l             | μg/l          | μg/l               | μg/l                 |
| <                            | <                           | <                  | <                            | <                | <             | <                  | <                    |
| Dinhanul                     | Banzal                      | Talual             | Ethylbonzol                  | m /n Vulal       | o Vulal       | Dichler            |                      |
| Biphenyl                     | Benzol                      | Toluol             | Ethylbenzol                  | m-/p-Xylol       | o-Xylol       | Dichlor-<br>methan | 1,1-<br>Dichlorether |
| μg/l                         | μg/l                        | μg/l               | μg/l                         | μg/l             | μg/l          | µg/l               | µg/l                 |
| 0,008                        | γ9/1                        | <u>μ</u> g/ι<br><  | 14                           | 55               | 21            | γς/                | μ <u>σ</u> /1        |
| 0,000                        |                             | -                  |                              | 00               |               | -                  | -                    |
|                              | trans-1,2-                  | Trichlor-          | 1,1,1-                       | Tetrachlor-      | 1,2-          | Trichlorethen      | Bromdichlo           |
| cis-1,2-                     |                             |                    | Trichlorethan                | methan           | Dichlorethan  |                    | methan               |
| cis-1,2-<br>Dichlorethen     | Dichlorethen                | methan             |                              |                  |               |                    |                      |
| ,                            | <b>Dichlorethen</b><br>μg/l | μg/l               | μg/l                         | μg/l             | μg/l          | μg/l               | μg/l                 |
| Dichlorethen                 | Dichlorethen                |                    |                              | μg/l<br><        | μg/l<br><     | μg/l<br><          | μg/l<br><            |
| Dichlorethen<br>µg/l<br><    | Dichlorethen  µg/l  <       | μg/l<br><          | μg/l<br><                    | <                | <             | <                  | <                    |
| Dichlorethen  µg/l  < 1,1,2- | <b>Dichlorethen</b><br>μg/l | μg/l<br><          | μg/l<br><<br><b>Tribrom-</b> | 1,2-             | 1,3-          | 1,4-               | KW-Index             |
| Dichlorethen<br>µg/l<br><    | Dichlorethen<br>µg/l<br><   | μg/l<br><          | μg/l<br><                    | <                | 1,3-          | <                  | <                    |

#### **Datenblatt Probe Nr.7**

Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenbearbeitung von Metallen und Kunststoffen - Bearbeitungsschlämme, die gefährliche Stoffe beinhalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 7       | 120114 | 27.06.2002 |

#### Chemische Charakterisierung - Feststoff

| Kohlonwa | ccarctoffo | linophila Stoffa | TOC   | Panzal | Toluol | Ethylhonzol | Yylol |
|----------|------------|------------------|-------|--------|--------|-------------|-------|
|          |            |                  |       |        |        |             |       |
| 10       | 130        | 0,92             | 310   | 340    | 120    | 0,45        | 2085  |
| mg/kg    | mg/kg      | mg/kg            | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| Arsen    | Diei       | Caumum           | Chrom | Kupier | Nickei | Quecksliber | ZIIIK |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 47                 | 5,4              | 59,8  | <0,01  | 0,3    | 4,6         | 29    |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 72,2       | 4,3        | <0,1       | <0,1         | 1,3     | 7,6         | <0,1      | 0,65        |

| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| 1 4   | 8.3              | 3.8     | 0.18                | <0.1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0.1                | <0.1              | <0.1                  | 0.19          | 390   |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| 0,5                    | 27,7               |

#### <u>Bemerkungen</u>

flüssig, pastös, schwarz, Geruch nach Lösungsmittel, flüssiger Überstand, Eluat zeigte ölige Eigenschaft



| Datenblatt Probe Nr.8                                                         |         |        |            |
|-------------------------------------------------------------------------------|---------|--------|------------|
| Abfälle aus HZVA und Entfernung von Farben und Lacken. Farb und Lack-         | lfd Nr. | EAV    | Datum      |
| schlämme, die organische Lösemittel oder andere gefährliche Stoffe enthalten. | 8       | 080113 | 27.06.2002 |

#### Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 40                    | 5,6                     | 7,3                     | ja        |
| 100        | 40                    | 2,7                     | 5,6                     | ja        |
| 100        | 40                    | 2,7                     | 5,1                     | ja        |
| Median     | 40                    | 2,7                     | 5,6                     | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 5                     | 38,8                    | 42,1                    | 49,2                    | ja        |
| 90         | 5                     | 42,9                    | 48,5                    | 61,2                    | ja        |
| 90         | 2                     | 49,4                    | 55,8                    | 70,5                    | ja        |
| Median     | 5                     | 42,9                    | 48,5                    | 61,2                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 79         | 64                    | 1,9                     | 9,8                     | ja        |
| 78,7       | 64                    | 1,8                     | 9,6                     | ja        |
|            |                       |                         |                         |           |
| Median     | 64                    | 1,8                     | 9,7                     | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 44,5       | -                     | ja        |
| 43,4       | 2-10                  | ja        |
|            |                       |           |
| Median     | 2-10                  | ja        |

Pflanzentest - Gesamtprobe

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | -                       | -                                   | -                             |           |
|                  | 8                       | 16                                  | 8                             | ja        |
| Lycopersicon     | -                       | -                                   | -                             | -         |
|                  | >32                     | 8                                   | 8                             | ja        |
| Avena            | -                       | -                                   | -                             |           |
|                  | 8                       | 4                                   | 8                             | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 8         |

umu-Test - Eluat ohne S9 Eluat mit S9

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median |          | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                  |                    |                 | Datenblatt P     | robe Nr.8       |               |               |               |
|------------------|--------------------|-----------------|------------------|-----------------|---------------|---------------|---------------|
| Abfälle aus HZVA | und Entfernung vo  | n Farben und La | cken. Farb und L | .ack-           | lfd Nr.       | EAV           | Datum         |
|                  | anische Lösemittel |                 |                  |                 | 8             | 080113        | 27.06.2002    |
|                  |                    |                 |                  | erisierung - El | uat           |               |               |
| Trockengewicht   | Wassergehalt %     | pН              | LF µS/cm         |                 |               |               |               |
| 64,5             | 35,5               | 6               | 747              |                 |               |               |               |
| DOC              | TOC                | NH4             | Quecksilber      | Cadmium         | Chrom,        | Nickel        | Kupfer        |
| mg/l             | mg/l               | mg/L            | µq/l             | μg/l            | µg/l          | μg/l          | µg/l          |
| 410              | -                  | 13              | <0,05            | <0,1            | <0,5          | 15,1          | 116           |
| Blei             | Zink               | Managa          | A                | Caball          | 407           | 1             |               |
|                  |                    | Mangan          | Arsen            | Cobalt          | AOX           |               |               |
| μg/l<br>2.72     | μg/l<br>10100      | μg/l<br>295     | μg/L<br><0.5     | μg/l<br>151     | mg/l<br>0,03  | -             |               |
| 2,12             | 10100              | 295             | <0,5             | 151             | 0,03          | J             |               |
| PCB 8            | НСН                | PCB 18          | PCB 28           | PCB 52          | PCB 101       | PCB 138       | PCB 153       |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l          |
| <                | <                  | <               | <                | <               | 0,012         | 0,022         | 0,012         |
| DOD 400          | 202 77             | DOD 405         | DOD 440          | DOD 400         | DOD 400       | DOD 400       |               |
| PCB 180          | PCB 77             | PCB 105         | PCB 118          | PCB 126         | PCB 169       | PCB 189       |               |
| μg/l<br>0.002    | μg/l<br><          | μg/l<br><       | μg/l<br><        | μg/l<br><       | μg/l<br><     | μg/l<br><     |               |
| 0,002            | `                  |                 | `                | `               | `             | `             |               |
| Naphthalin       | Acenaphthylen      | Acenaphten      | Fluoren          | Phenanthren     | Anthracen     | Fluoranthen   | Pyren         |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l          |
| 11               | <                  | 0,004           | 0,04             | 0,019           | <             | 0,009         | 0,009         |
|                  |                    |                 | •                |                 |               | •             |               |
| Benzo(a)-        | Chrysen            | Benzo(b)-       | Benzo(k)-        | Benzo(a)-pyren  | Indeno(1,2,3- | Dibenz(a,h)-  | Benzo(g,h,i)- |
| anthracen        |                    | fluoranthen     | fluoranthen      |                 | cd)-pyren     | anthracen     | perylen       |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l          |
| 0,001            | 0,004              | 0,001           | <                | 0,002           | <             | <             | 0,001         |
| Biphenyl         | Benzol             | Toluol          | Ethylbenzol      | m-/p-Xylol      | o-Xylol       | Dichlor-      | 1,1-          |
| Diplielly        | Delizoi            | Toluoi          | Lillyibelizoi    | III-7p-Xyloi    | O-Ayloi       | methan        | Dichlorethen  |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l          |
| n.b.             | <                  | 14              | 450              | 1040            | 410           | <             | <             |
|                  |                    |                 |                  |                 |               |               |               |
| cis-1,2-         | trans-1,2-         | Trichlor-       | 1,1,1-           | Tetrachlor-     | 1,2-          | Trichlorethen | Bromdichlor-  |
| Dichlorethen     | Dichlorethen       | methan          | Trichlorethan    | methan          | Dichlorethan  |               | methan        |
| μg/l             | μg/l               | μg/l            | μg/l             | μg/l            | μg/l          | μg/l          | μg/l          |
| <                | <                  | <               | <                | <               | <             | <             | <             |
| 1,1,2-           | Tetrachlor-ethen   | Dibromchlor-    | Tribrom-         | 1,2-            | 1,3-          | 1.4-          | KW-Index      |
| Trichlorethan    | Totacinor-etilen   | methan          | methan           | Dichlorbenzol   | Dichlorbenzol | Dichlorbenzol | (H53)         |
| μg/l             | μg/l               | μg/l            | µg/l             | μg/l            | µg/l          | μg/l          | mg/l          |
| <                | <                  | <               | <                | <               | <             | <             | -             |

| ofälle aug HZV/A | und Entfernung v             | on Farben und La   | cken Earh und La                      | ck            | lfd Nr.      | FAV           | Datum       |
|------------------|------------------------------|--------------------|---------------------------------------|---------------|--------------|---------------|-------------|
|                  | •                            | el oder andere gef |                                       |               | 8            | 080113        | 27.06.2002  |
| mamme, die org   | anische Losennii             | 9                  |                                       |               |              | 060113        | 27.00.2002  |
|                  |                              |                    | he Charakteris                        |               |              |               |             |
| Arsen            | Blei                         | Cadmium            | Chrom                                 | Kupfer        | Nickel       | Quecksilber   | Zink        |
| mg/kg            | mg/kg                        | mg/kg              | mg/kg                                 | mg/kg         | mg/kg        | mg/kg         | mg/kg       |
| 1,7              | 1025                         | 6,2                | 100                                   | 70            | 67           | <0,05         | 119200      |
| Kohlenwa         | sserstoffe                   | lipophile Stoffe   | ТОС                                   | Benzol        | Toluol       | Ethylbenzol   | Xylol       |
| GEV              |                              | Gew.%              | Gew.%                                 | mg/kg         | mg/kg        | mg/kg         | mg/kg       |
| 6.               |                              | 10                 | 24.3                                  | 0.05          | 1.3          | 150           | 640         |
| <u>_</u> ,       |                              | 10                 | 21,0                                  | 0,00          | 1,0          | 100           | 0.0         |
| Summe BTEX       | Naphthalin                   | Acenaphten         | Acenaphtylen                          | Fluoren       | Phenanthren  | Anthracen     | Fluoranthen |
| mg/kg            | mg/kg                        | mg/kg              | mg/kg                                 | mg/kg         | mg/kg        | mg/kg         | mg/kg       |
| 791              | 50                           | <0,1               | <0,1                                  | 0,42          | 0,98         | <0,1          | <0,1        |
| Pyren            | Benz(a)a                     | anthracen          | Chrysen                               | Benzo(b       | )fluoranthen | Benzo(k)f     | luoranthen  |
| mg/kg            |                              | g/kg               | mg/kg                                 | n             | ng/kg        |               | g/kg        |
| 0,1              |                              | ,47                | 1,2                                   |               | 0,56         |               | 0,1         |
| Dibenz(ah)       | anthracon                    | Benzo(gh           | i)porulon                             | Indono(1      | 2,3-cd)pyren | Benzo(a)pyren | AOX         |
|                  |                              | , , ,              | · · · · · · · · · · · · · · · · · · · |               |              | · · · · · ·   |             |
|                  | mg/kgmg/kg<br><0.1 <0.1 <0.1 |                    | 19/kg<br><0.1                         | mg/kg<br><0.1 | mg/kg<br>210 |               |             |
|                  | , -                          | <u> </u>           | , .                                   |               | -,-          |               |             |
| Wasserlösl       |                              | Summe PA           | ,                                     |               |              |               |             |
|                  | v.%                          | l mg               | /ka                                   |               |              |               |             |

#### <u>Bemerkungen</u>

flüssig-pastös, schwarz, Geruch nach Lösungsmitteln, flüssiger Überstand



#### Datenblatt Probe Nr. 9

Abfälle vom Gießen von Nichteisenmetallen, Gießformen und -Sande nach dem Gießen mit Ausnahme derjenigen, die..., Formsand

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 9       | 101008 | 11.07.2002 |

## Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 13,9       | 1,25                  | -                       | -                       | nein      |
| -3,5       | 1,25                  | -                       | -                       | nein      |
| 16,2       | 1,25                  | -                       | -                       | nein      |
| Median     | 1,25                  | -                       | -                       | nein      |

Daphnientest - Eluat

| Dapiniontost - Liaat |                       |                         |                         |                         |           |  |  |
|----------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|--|--|
| 100%-Probe           | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |  |  |
| [%Hemmung]           |                       | [%]                     | [%]                     | [%]                     |           |  |  |
| 100                  | 2                     | -                       | -                       | -                       | ja        |  |  |
| 70                   | 2                     | -                       | -                       | -                       | ja        |  |  |
|                      |                       |                         |                         |                         |           |  |  |
| Median               | 2                     | -                       | -                       | -                       | ia        |  |  |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |  |  |
|------------|-----------------------|-------------------------|-------------------------|-----------|--|--|
| [%Hemmung] |                       | [%]                     | [%]                     |           |  |  |
| 27,5       | 4                     | 32,7                    | 119,9                   | ja        |  |  |
| 29,9       | 4                     | 26,7                    | 109,7                   | ja        |  |  |
|            |                       |                         |                         |           |  |  |
| Median     | 4                     | 29,7                    | 114,8                   | ja        |  |  |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 16,3       | 2                     | nein      |
|            |                       |           |
|            |                       |           |
| Median     | 2                     | nein      |

Pflanzentest - Gesamtprobe

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | -                       | 4                                   | 8                             | ja        |
|                  | <32                     | 64                                  | <32                           | ja        |
| Lycopersicon     | 32                      | 8                                   | 8                             | ja        |
|                  | 64                      | 64                                  | 64                            | ja        |
| Avena            | 2                       | 2                                   | 2                             | nein      |
|                  | <32                     | <32                                 | 64                            | ja        |
| repräsentativste | er G-Wert               |                                     |                               | 32        |

| umu-Test - Elu | at ohne S9 |          |              | Eluat mit S9 |          |          |              |
|----------------|------------|----------|--------------|--------------|----------|----------|--------------|
|                | GEU        | VD       | Gentoxizität |              | GEU      | VD       | Gentoxizität |
|                | IR < 1,5   | IR < 1,5 | GEU > 1,5    |              | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|                | 1,5        | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                | 1,5        | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                |            |          |              |              |          |          |              |
| Median         |            | 0,67     | nein         | Median       | 1,5      | 0,67     | nein         |

|                                                                                                                         |                    |                  | Datenblatt P  | Orobo Nr. O       |                      |                    |                      |
|-------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|---------------|-------------------|----------------------|--------------------|----------------------|
| Ahfälle vom Gieße                                                                                                       | an von Nichteisenm | etallen Gießform |               |                   | lfd Nr.              | EAV                | Datum                |
| Abfälle vom Gießen von Nichteisenmetallen, Gießformen und -Sande nach dem Gießen mit Ausnahme derjenigen, die, Formsand |                    |                  |               |                   |                      | 101008             | 11.07.2002           |
|                                                                                                                         |                    | Chemi            | sche Charakt  | terisierung - Elu | uat                  |                    |                      |
| Trockengewicht                                                                                                          | Wassergehalt %     | рН               | LF μS/cm      | 1                 |                      |                    |                      |
| 99,9                                                                                                                    | 0,1                | 5 eing. auf 7,3  | 85,2          |                   |                      |                    |                      |
| DOC                                                                                                                     | тос                | NH4              | Quecksilber   | Cadmium           | Chrom,               | Nickel             | Kupfer               |
| mg/l                                                                                                                    | mg/l               | mg/L             | μg/l          | μg/l              | μg/l                 | μg/l               | μg/l                 |
| 13                                                                                                                      | -                  | 0,05             | <0,05         | <0,1              | <0,5                 | <0,5               | 4,1                  |
| Blei                                                                                                                    | Zink               | Mangan           | Arsen         | Cobalt            | AOX                  | ]                  |                      |
| μg/l                                                                                                                    | μq/l               | μg/l             | μq/L          | µg/l              | mg/l                 | 1                  |                      |
| 2,87                                                                                                                    | 91                 | <5               | <0,5          | 1,1               | 0,02                 | ]                  |                      |
| DOD 0                                                                                                                   | LIOU               | DOD 40           | BOD 00        | DOD 50            | DOD 404              | DOD 400            | DOD 450              |
| PCB 8                                                                                                                   | HCH                | PCB 18           | PCB 28        | PCB 52            | PCB 101              | PCB 138            | PCB 153              |
| μg/l<br><                                                                                                               | μg/l<br><          | μg/l<br><        | μg/l<br><     | μg/l<br><         | μg/l<br>0,006        | μg/l<br>0.01       | μg/l<br>0,005        |
|                                                                                                                         | \                  |                  |               |                   | 0,006                | 0,01               | 0,005                |
| PCB 180                                                                                                                 | PCB 77             | PCB 105          | PCB 118       | PCB 126           | PCB 169              | PCB 189            |                      |
| μg/l                                                                                                                    | μg/l               | μg/l             | μg/l          | μg/l              | μg/l                 | μg/l               |                      |
| 0,001                                                                                                                   | <                  | <                | <             | <                 | <                    | <                  |                      |
| Naphthalin                                                                                                              | Acenaphthylen      | Acenaphten       | Fluoren       | Phenanthren       | Anthracen            | Fluoranthen        | Pyren                |
| μg/l                                                                                                                    | μg/l               | μg/l             | μg/l          | μg/l              | μg/l                 | μg/l               | μg/l                 |
| 22                                                                                                                      | 0,002              | 0,003            | 0,004         | 0,006             | 0,007                | 0,002              | 0,002                |
| Benzo(a)-                                                                                                               | Chrysen            | Benzo(b)-        | Benzo(k)-     | Benzo(a)-pyren    | Indeno(1,2,3-        | Dibenz(a,h)-       | Benzo(g,h,i)         |
| anthracen                                                                                                               | Ciliyseii          | fluoranthen      | fluoranthen   | Delizo(a)-pyreli  | cd)-pyren            | anthracen          | perylen              |
| μg/l                                                                                                                    | μg/l               | µg/l             | µg/l          | μg/l              | μg/l                 | µg/l               | µg/l                 |
| 0                                                                                                                       | 0,001              | 0<br>0           | γ9/1          | 0,001             | γς                   | γ9/1               | 0                    |
|                                                                                                                         | 0,001              |                  |               | 0,001             |                      |                    |                      |
| Biphenyl                                                                                                                | Benzol             | Toluol           | Ethylbenzol   | m-/p-Xylol        | o-Xylol              | Dichlor-<br>methan | 1,1-<br>Dichlorethen |
| μg/l                                                                                                                    | μg/l               | μg/l             | μg/l          | μg/l              | μg/l                 | μg/l               | μg/l                 |
| 0,005                                                                                                                   | <                  | <                | <             | 0,94              | 1,09                 | <                  | <                    |
| cis-1,2-                                                                                                                | trans-1,2-         | Trichlor-        | 1,1,1-        | Tetrachlor-       | 1,2-                 | Trichlorethen      | Bromdichlor          |
| Dichlorethen                                                                                                            | Dichlorethen       | methan           | Trichlorethan | methan            | 1,∠-<br>Dichlorethan | Tricinoretilen     | methan               |
| µg/l                                                                                                                    | µg/l               | methan<br>µg/l   | µg/l          | methan<br>µg/l    | µg/l                 | μg/l               | methan<br>µg/l       |
| μ <u>g</u> /i<br><                                                                                                      | μg/i<br><          | μ <u>g</u> /1    | μg/i<br><     | μ <u>γ</u> γη <   | μg/i<br><            | μg/i<br><          | μg/i<br><            |
| •                                                                                                                       |                    | -                |               | •                 | •                    |                    |                      |
| 1,1,2-                                                                                                                  | Tetrachlor-ethen   | Dibromchlor-     | Tribrom-      | 1,2-              | 1,3-                 | 1,4-               | KW-Index             |
| Trichlorethan                                                                                                           |                    | methan           | methan        | Dichlorbenzol     | Dichlorbenzol        | ,                  | (H53)                |
| μg/l                                                                                                                    | μg/l               | μg/l             | μg/l          | μg/l              | μg/l                 | μg/l               | mg/l                 |
| <                                                                                                                       | <                  | <                | <             | <                 | <                    | <                  | -                    |

Abfälle vom Gießen von Nichteisenmetallen, Gießformen und -Sande nach dem Gießen mit Ausnahme derjenigen, die..., Formsand

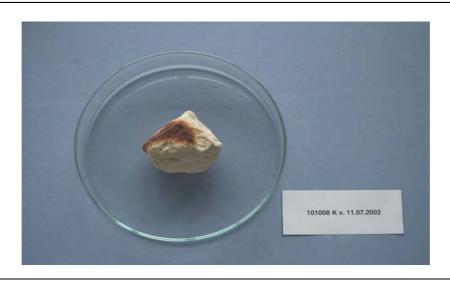
|        | Datum      |
|--------|------------|
| 101008 | 11.07.2002 |
|        | 101008     |

## **Chemische Charakterisierung - Feststoff**

| Arsen | Blei  | Cadmium | Chrom | Kupfer | Nickel | Quecksilber | Zink  |
|-------|-------|---------|-------|--------|--------|-------------|-------|
| mg/kg | mg/kg | mg/kg   | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| <0,1  | 1     | 0,02    | 1,3   | 2,2    | <1     | 0,07        | 12    |
|       |       |         |       |        |        |             |       |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,002              | <0,01            | 0,6   | <0,01  | 0,01   | 0,04        | 0,26  |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 0,31       | 3,3        | 0,1        | <0,1         | <0,1    | 0,15        | <0,1      | <0,1        |


| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| <0,1  | <0,1             | <0,1    | <0,1                | <0,1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0.1                | <0.1              | <0.1                  | <0.1          | 15    |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| <0,1                   | 3,55               |

## Bemerkungen

Kernsand, fest-steinig, beige



| Datenblatt Probe Nr. 11                                                  |         |        |            |  |  |  |
|--------------------------------------------------------------------------|---------|--------|------------|--|--|--|
| Abfall aus dem Schreddern von metallhaltigen Abfällen - Schredderleicht- | lfd Nr. | EAV    | Datum      |  |  |  |
| fraktionen und Staub mit Ausnahme derjenigen, die unter 191003 fallen.   | 11      | 191004 | 21.05.2002 |  |  |  |
| , ,                                                                      |         |        |            |  |  |  |

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 10                    | 9,9                     | 14,2                    | ja        |
| 100        | 10                    | 14,3                    | 16,4                    | ja        |
| 89,1       | 4                     | 29,1                    | 42,6                    | ja        |
| Median     | 10                    | 14,3                    | 16,4                    | ja        |

Daphnientest - Eluat

| Dapiniontoot Li |                       |                         |                         |                         |           |
|-----------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| 100%-Probe      | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
| [%Hemmung]      |                       | [%]                     | [%]                     | [%]                     |           |
| 30              | 2                     | 63,8                    | 77,2                    | 111,2                   | ja        |
| 10              | 1                     | 100,0                   | -                       | -                       | nein      |
|                 |                       |                         |                         |                         |           |
| Median          | 1,5                   | 81,9                    | 77,2                    | 111,2                   | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 60,6       | 16                    | 11,64                   | 35,14                   | ja        |
| 59,2       | 16                    | 11,56                   | 36,74                   | ja        |
|            |                       |                         |                         |           |
| Median     | 16                    | 11,6                    | 35,9                    | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 76,8       | -                     | ja        |
| 98,4       | 10-100                | ja        |
|            |                       |           |
| Median     | 10-100                | ja        |

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | 2                       | 8                                   | >32                           | ja        |
|                  | >32                     | >32                                 | >32                           | ja        |
| Lycopersicon     | 16                      | 8                                   | 16                            | ja        |
|                  | >32                     | >32                                 | >32                           | ja        |
| Avena            | 2                       | 2                                   | 2                             | nein      |
|                  | 4                       | 4                                   | >32                           | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | >32       |

| mu-Test - Eluat ohne S9 | Eluat mit S9 |
|-------------------------|--------------|
|-------------------------|--------------|

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          | <u> </u>     |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                   |                    |                    | Datenblatt Pr    | obe Nr. 11       |                      |                |                |
|-------------------|--------------------|--------------------|------------------|------------------|----------------------|----------------|----------------|
| Abfall aus dem Sc | hreddern von metal | lhaltigen Abfällen | - Schredderleicl | ht-              | lfd Nr.              | EAV            | Datum          |
|                   | ub mit Ausnahme d  |                    |                  |                  | 11                   | 191004         | 21.05.2002     |
|                   |                    | Chemis             | sche Charakte    | erisierung - Elu | uat                  |                |                |
| Trockengewicht    | Wassergehalt %     | рН                 | LF µS/cm         |                  |                      |                |                |
| 92,69             | 7,31               | 8,1                | 983              | ]                |                      |                |                |
| DOC               | TOC                | NH4                | Quecksilber      | Cadmium          | Chrom                | Nickel         | Kupfer         |
| mg/l              | mg/l               | mg/L               | μg/l             | μg/l             | μg/l                 | μg/l           | μg/l           |
| 85                | -                  | 0,1                | 0,5              | 8,7              | <0,5                 | 69,6           | 210            |
| Blei              | Zink               | Mangan             | Arsen            | Cobalt           | AOX                  | 1              |                |
| µg/l              | µg/l               | µg/l               | μg/L             | µg/l             | ma/l                 |                |                |
| 16,3              | 3510               | 854                | <0,5             | 12,1             | 0,47                 |                |                |
|                   |                    |                    |                  |                  |                      |                |                |
| PCB 8             | HCH                | PCB 18             | PCB 28           | PCB 52           | PCB 101              | PCB 138        | PCB 153        |
| μg/l              | μg/l               | μg/l               | μg/l             | μg/l             | μg/l                 | μg/l           | μg/l           |
| <                 | <                  | <                  | <                | <                | 0,01                 | 0,023          | 0,013          |
| PCB 180           | PCB 77             | PCB 105            | PCB 118          | PCB 126          | PCB 169              | PCB 189        |                |
| μg/l              | μg/l               | μg/l               | μg/l             | μg/l             | μg/l                 | μg/l           |                |
| 0,002             | <                  | 0,001              | <                | <                | <                    | <              |                |
| Naphthalin        | Acenaphthylen      | Acenaphten         | Fluoren          | Phenanthren      | Anthracen            | Fluoranthen    | Pyren          |
| μg/l              | μg/l               | μg/l               | μg/l             | μg/l             | µg/l                 | μg/l           | μg/l           |
| 0,32              | 0,077              | 0,12               | 0,11             | 0,2              | 0,017                | 0,024          | 0,019          |
| ,                 | ,                  | •                  | ·                |                  | ,                    | •              | •              |
| Benzo(a)-         | Chrysen            | Benzo(b)-          | Benzo(k)-        | Benzo(a)-pyren   | Indeno(1,2,3-        | Dibenz(a,h)-   | Benzo(g,h,i)-  |
| anthracen         | -                  | fluoranthen        | fluoranthen      |                  | cd)-pyren            | anthracen      | perylen        |
| μg/l              | μg/l               | μg/l               | μg/l             | μg/l             | μg/l                 | μg/l           | μg/l           |
| <                 | 0,002              | 0,001              | <                | 0,002            | 0,001                | 0              | 0,001          |
| Biphenyl          | Benzol             | Toluol             | Ethylbenzol      | m-/p-Xylol       | o-Xylol              | Dichlor-       | 1,1-           |
| 2.6               | 2020.              |                    | ,                |                  | C 7.1,10.            | methan         | Dichlorethen   |
| μg/l              | μg/l               | μg/l               | μg/l             | μg/l             | μg/l                 | μg/l           | μg/l           |
| 0,083             | 2,17               | 6,17               | 2,35             | 4,57             | 11                   | 0,46           | <              |
| cis-1,2-          | trans-1,2-         | Trichlor-          | 1,1,1-           | Tetrachlor-      | 1.2-                 | Trichlorethen  | Bromdichlor-   |
| Dichlorethen      | Dichlorethen       | methan             | Trichlorethan    | methan           | 1,2-<br>Dichlorethan | Tricinoretilen | methan         |
| µg/l              | µg/l               | metnan<br>µg/l     | µg/l             | metnan<br>µg/l   | µg/l                 | µg/l           | methan<br>µg/l |
| μ <u>y</u> /1     | μg/1               | μ <u>γ</u> //      | μg/i<br><        | μg/i<br><        | μg/i<br><            | 0,11           | μg/i<br><      |
| `                 |                    |                    | 1                | `                |                      | 0,11           |                |
| 1,1,2-            | Tetrachlor-ethen   | Dibromchlor-       | Tribrom-         | 1,2-             | 1,3-                 | 1,4-           | KW-Index       |
| Trichlorethan     |                    | methan             | methan           | Dichlorbenzol    | Dichlorbenzol        | Dichlorbenzol  | (H53)          |
| μg/l              | μg/l               | μg/l               | μg/l             | μg/l             | μg/l                 | μg/l           | mg/l           |
| <                 | <                  | <                  | <                | <                | <                    | <              | -              |

| fall aus dem Sch | reddern von met | allhaltigen Abfäller | n - Schredderleicht | ;-                  | Ifd Nr.       | EAV                 | Datum         |
|------------------|-----------------|----------------------|---------------------|---------------------|---------------|---------------------|---------------|
| ktionen und Sta  | ub mit Ausnahme | derjenigen, die un   | ter 191003 fallen.  |                     | 11            | 191004              | 21.05.200     |
|                  |                 | Chemiso              | he Charakteris      | ierung - Fes        | ststoff       |                     |               |
| Arsen            | Blei            | Cadmium              | Chrom               | Kupfer              | Nickel        | Quecksilber         | Zink          |
| mg/kg            | mg/kg           | mg/kg                | mg/kg               | mg/kg               | mg/kg         | mg/kg               | mg/kg         |
| 32               | 3300            | 31                   | 520                 | 10650               | 340           | 189                 | 17130         |
| Kohlenwa         | sserstoffe      | lipophile Stoffe     | TOC I               | Benzol              | Toluol        | Ethylbenzol         | Xylol         |
| GEW.%            |                 | Gew.%                | Gew.%               | mg/kg               | mg/kg         | mg/kg               | mg/kg         |
| 1,               | 8               | 2,2                  | 22,1                | 4                   | 20            | 8,3                 | 35            |
| umme BTEX        | Naphthalin      | Acenaphten           | Acenaphtylen        | Fluoren             | Phenanthren   | Anthracen           | Fluoranthe    |
| mg/kg            | mg/kg           | mg/kg                | mg/kg               | mg/kg               | mg/kg         | mg/kg               | mg/kg         |
| 67,3             | 3,1             | 0,47                 | 0,14                | 1,3                 | 6,4           | 0,4                 | 5,8           |
| Pyren            | Benz(a)         | anthracen            | Chrysen             | Benzo(b)fluoranthen |               | Benzo(k)fluoranthen |               |
| mg/kg            | m               | g/kg                 | mg/kg               | 'n                  | ng/kg         | mg/kg               |               |
| 6,9              |                 | 1,9                  | 2                   |                     | 1,9           | 0,85                |               |
| Dibenz(ah)       | anthracen       | Benzo(gh             | ni)perylen          | Indeno(1,           | 2,3-cd)pyren  | Benzo(a)pyren       | AOX           |
| mg               | /kg             |                      | <i></i>             |                     |               | mg/kg               |               |
| mg/kg<br>0,31    |                 | 1.                   | mg/kg<br>1,2        |                     | ng/kg<br>0,89 | 1.7                 | mg/kg<br>6000 |

# Bemerkungen

heterogene Probe mit unterschiedlich großen Partikeln,



Abfälle aus HZVA und Entfernung von Farben und Lacken- wässrige Schlämme, die Farben oder Lacke mit organischen Lösungsmitteln oder anderen gefählichen Stoffen enthalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 12      | 080115 | 12.09.2002 |
|         |        |            |

## Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 1280                  | 0,1                     | 0,2                     | ja        |
| 100        | 640                   | 0,2                     | 0,3                     | ja        |
| 100        | 800                   | 0,3                     | 0,3                     | ja        |
| Median     | 800                   | 0,2                     | 0,3                     | ja        |

Daphnientest - Eluat

| Duplinientest - Liuut |                       |                         |                         |                         |           |  |
|-----------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|--|
| 100%-Probe            | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |  |
| [%Hemmung]            |                       | [%]                     | [%]                     | [%]                     |           |  |
| 100                   | >20                   | 7,3                     | 7,9                     | 9,2                     | ja        |  |
| 100                   | 40                    | 2,1                     | 2,3                     | 2,7                     | ja        |  |
| 100                   | 20                    | 11,2                    | 13,0                    | 17,2                    | ja        |  |
| Median                | 30                    | 7,3                     | 7,9                     | 9,2                     | ja        |  |

Leuchtbakterientest - Eluat

| Educition to the Control of the Cont |                       |                         |                         |           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|-------------------------|-----------|--|--|
| 50%-Probe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |  |  |
| [%Hemmung]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | [%]                     | [%]                     |           |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                    | 5,3                     | 15,2                    | ja        |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                    | 5,5                     | 15,8                    | ja        |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                    | 5,8                     | 16,3                    | ja        |  |  |
| Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32                    | 5,5                     | 15,8                    | ja        |  |  |

Bakterienkontakttest - Eluat

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 101,8      | >100                  | ja        |
| 99,8       | 10-100                | ja        |
|            |                       |           |
| Median     | 10-100                | ja        |

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | -                       | <64                                 | <64                           | ja        |
|                  | 64                      | 64                                  | 64                            | ja        |
| Lycopersicon     | 256                     | <64                                 | 128                           | ja        |
|                  | 128                     | 128                                 | 128                           | ja        |
| Avena            | -                       | <64                                 | <64                           | ja        |
|                  | <16                     | 32                                  | 64                            | ja        |
| repräsentativste | r G <sub>P</sub> -Wert  |                                     |                               | 64        |

| umu-Test - Eluat ohne S9 | Eluat mit S9 |
|--------------------------|--------------|
|                          |              |

|        | GEU               | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|-------------------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5          | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | Probe zytotoxisch | -        | -            |        | 1,5      | 0,67     | nein         |
|        | Probe zytotoxisch | -        | -            |        | 1,5      | 0,67     | nein         |
|        |                   |          |              |        |          |          |              |
| Median | Probe zytotoxisch | 1        | -            | Median | 1,5      | 0,67     | nein         |

| hf=11 1.17\/A                         | d Catterania                  |                  |                 | h   2              | Ifal No.      | E AV               | Datum               |
|---------------------------------------|-------------------------------|------------------|-----------------|--------------------|---------------|--------------------|---------------------|
|                                       | und Entfernung von            |                  | -               |                    | Ifd Nr.       | EAV                | Datum               |
| e Farben oder La<br>chen Stoffen enth | acke mit organische<br>alten. | n Losungsmittein | oder anderen ge | etan-              | 12            | 080115             | 12.09.2002          |
|                                       |                               | Chem             | ische Charak    | terisierung - Elua | ıt            |                    |                     |
| Trockengewicht                        | Wassergehalt %                | pH               | LF μS/cm        | ]                  |               |                    |                     |
| 36,8                                  | 63,2                          | 8,1              | 1238            | ]                  |               |                    |                     |
| DOC                                   | TOC                           | NH4              | Quecksilber     | Cadmium            | Chrom,        | Nickel             | Kupfer              |
| mg/l                                  | mg/l                          | mg/L             | μg/l            | μg/l               | μg/l          | μg/l               | μg/l                |
| 270                                   | -                             | 0,05             | 0,1             | <0,1               | <0,5          | 44,2               | 14,4                |
| Blei                                  | Zink                          | Mangan           | Arsen           | Cobalt             | AOX           | 1                  |                     |
| μg/l                                  | μg/l                          | μg/l             | μg/L            | μg/l               | mg/l          |                    |                     |
| 3,06                                  | 304                           | 173              | 2,5             | 1,4                | 1,3           |                    |                     |
|                                       |                               |                  |                 |                    |               | =<br>              |                     |
| PCB 8                                 | HCH                           | PCB 18           | PCB 28          | PCB 52             | PCB 101       | PCB 138            | PCB 153             |
| μg/l                                  | μg/l                          | μg/l             | μg/l            | μg/l               | μg/l          | μg/l               | μg/l                |
| <                                     | <                             | <                | <               | <                  | 0,009         | 0,019              | 0,011               |
| PCB 180                               | PCB 77                        | PCB 105          | PCB 118         | PCB 126            | PCB 169       | PCB 189            |                     |
| μg/l                                  | μg/l                          | μg/l             | μg/l            | μg/l               | μg/l          | μg/l               |                     |
| 0,001                                 | <                             | <                | <               | <                  | <             | <                  |                     |
| Naphthalin                            | Acenaphthylen                 | Acenaphten       | Fluoren         | Phenanthren        | Anthracen     | Fluoranthen        | Pyren               |
| μg/l                                  | μg/l                          | μg/l             | μg/l            | μg/l               | μg/l          | μg/l               | μg/l                |
| 0,14                                  | <                             | <                | 0,029           | 0,013              | 0,029         | 0,005              | 0,004               |
| Benzo(a)-                             | Chrysen                       | Benzo(b)-        | Benzo(k)-       | Benzo(a)-pyren     | Indeno(1,2,3- | Dibenz(a,h)-       | Benzo(g,h,          |
| anthracen                             | <b>,</b>                      | fluoranthen      | fluoranthen     |                    | cd)-pyren     | anthracen          | pervien             |
| μg/l                                  | μg/l                          | μg/l             | μg/l            | μg/l               | μg/l          | μg/l               | μg/l                |
| <                                     | 0,001                         | <                | 0               | <                  | 0             | <                  | 0,001               |
| Biphenyl                              | Benzol                        | Toluol           | Ethylbenzol     | m-/p-Xylol         | o-Xylol       | Dichlor-<br>methan | 1,1-<br>Dichlorethe |
| μg/l                                  | μg/l                          | μg/l             | μg/l            | μg/l               | μg/l          | μg/l               | µg/l                |
| 0,046                                 | <                             | <                | 11              | 59                 | 17            | <                  | <                   |
| cis-1,2-                              | trans-1,2-                    | Trichlor-        | 1,1,1-          | Tetrachlor-methan  | 1,2-          | Trichlorethen      | Bromdichlo          |
| Dichlorethen                          | Dichlorethen                  | methan           | Trichlorethan   |                    | Dichlorethan  |                    | methan              |
| μg/l                                  | μg/l                          | μg/l             | μg/l            | μg/l               | μg/l          | μg/l               | μg/l                |
| <                                     | <                             | 0,112            | <               | <                  | <             | <                  | <                   |
| 1,1,2-                                | Tetrachlorethen               | Dibromchlor-     | Tribrom-        | 1,2-Dichlorbenzol  | 1,3-          | 1,4-               | KW-Index            |
| Trichlorethan                         | 3                             | methan           | methan          | .,                 | Dichlorbenzol | Dichlorbenzol      | (H53)               |
| μg/l                                  | μg/l                          | μg/l             | μg/l            | μg/l               | μg/l          | μg/l               | mg/l                |
| <                                     | <                             | <                | <               | <                  | <             | <                  | 5,1                 |

Abfälle aus HZVA und Entfernung von Farben und Lacken- wässrige Schlämme, die Farben oder Lacke mit organischen Lösungsmitteln oder anderen gefählichen Stoffen enthalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 12      | 080115 | 12.09.2002 |
|         |        |            |

## **Chemische Charakterisierung - Feststoff**

| Arsen | Blei  | Cadmium | Chrom | Kupter | Nickel | Quecksilber | Zink  |
|-------|-------|---------|-------|--------|--------|-------------|-------|
| mg/kg | mg/kg | mg/kg   | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 8,9   | 11    | 0,13    | 8,1   | 30     | 78     | <0,05       | 440   |
|       |       |         |       |        |        |             |       |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 2,9                | 4,5              | 33    | <0,01  | 0,01   | 0,75        | 5,5   |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 6,26       | 4,1        | 0,36       | 0,1          | 0,9     | 2,5         | <0,1      | 0,11        |

| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| 0.77  | 0.2              | 0.28    | <0.1                | <0.1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0.1                | <0.1              | <0.1                  | <0.1          | 920   |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |  |  |
|------------------------|--------------------|--|--|
| Gew.%                  | mg/kg              |  |  |
| 1,9                    | 9,32               |  |  |

### <u>Bemerkungen</u>

grau, pastös,



| Datenblatt Probe Nr. 13                                                            |         |        |            |  |  |  |
|------------------------------------------------------------------------------------|---------|--------|------------|--|--|--|
| Abfälle aus HZVA und Entfernung von Farben und Lacken - wässrige Schlämme          | Ifd Nr. | EAV    | Datum      |  |  |  |
| die Farben oder Lacke enthalten, mit Ausnahme derjeniger, die unter 080115 fallen. | 13      | 080116 | 12.09.2002 |  |  |  |
|                                                                                    |         |        |            |  |  |  |

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 40                    | 5,9                     | 7,9                     | ja        |
| 100        | 40                    | 3,4                     | 5,5                     | ja        |
|            |                       |                         |                         |           |
| Median     | 40                    | 4,6                     | 6,7                     | ja        |

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 5                     | 36,4                    | 39,5                    | 46,2                    | ja        |
| 100        | 5                     | 27,0                    | 28,5                    | 31,6                    | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 5                     | 31,7                    | 34,0                    | 38,9                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 42,9       | 8                     | 22,2                    | 62,5                    | ja        |
| 48,6       | 8                     | 17,0                    | 50,3                    | ja        |
|            |                       |                         |                         |           |
| Median     | 8                     | 19,6                    | 56,4                    | ja        |

Bakterienkontakttest - Eluat

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 73         | 10-100                | ja        |
|            |                       |           |
|            |                       |           |
| Median     | 10-100                | ja        |

| 50%-Probe    | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|--------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica     | >128                    | 64                                  | 128                           | ja        |
|              | 1024                    | <128                                | <128                          | ja        |
| Lycopersicon | >128                    | 64                                  | 128                           | ja        |
|              | 512                     | 256                                 | 256                           | ja        |
| Avena        | >128                    | 32                                  | 32                            | ja        |
|              | <128                    | <128                                | <128                          | -         |
| Median       |                         |                                     |                               | 64        |

umu-Test - Eluat ohne S9 Eluat mit S9

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                           |                       |                          | D-4bl-#            | Duck - No. 40         |               |               |                      |
|---------------------------|-----------------------|--------------------------|--------------------|-----------------------|---------------|---------------|----------------------|
|                           |                       |                          |                    | Probe Nr. 13          |               |               |                      |
|                           | und Entfernung von    |                          |                    |                       | lfd Nr.       | EAV           | Datum                |
| <u>die Farben oder La</u> | acke enthalten, mit / | <u>Ausnahme derjeniç</u> | ger, die unter 080 | 0115 fallen.          | 13            | 080116        | 12.09.2002           |
|                           |                       | Che                      | mische Chara       | akterisierung - Eluat |               |               |                      |
| Trockengewicht            | Wassergehalt %        | рН                       | LF μS/cm           |                       |               |               |                      |
| 37,3                      | 62,7                  | 7,6                      | 1880               |                       |               |               |                      |
| DOC                       | TOC                   | NH4                      | Quecksilber        | Cadmium               | Chrom,        | Nickel        | Kupfer               |
| mg/l                      | mg/l                  | mg/L                     | μg/l               | μg/l                  | μg/l          | μg/l          | μg/l                 |
| 3100                      | -                     | 78                       |                    | <0,1                  | <0,5          | 3,6           | 14,2                 |
| Blei                      | Zink                  | Mangan                   | Arsen              | Cobalt                | AOX           | 1             |                      |
| µg/l                      | µg/l                  | µg/l                     | µg/L               | µg/l                  | mg/l          |               |                      |
| μg/i<br>3,84              | μ <u>μ</u> γη<br>357  | μg/i<br>204              | μg/L<br><0.5       | μ <u>γ</u> /1<br>2.8  | 0.27          |               |                      |
| 3,04                      | 337                   | 204                      | <b>~</b> 0,5       | 2,0                   | 0,21          |               |                      |
| PCB 8                     | HCH                   | PCB 18                   | PCB 28             | PCB 52                | PCB 101       | PCB 138       | PCB 153              |
| μg/l                      | μg/l                  | μg/l                     | μg/l               | μg/l                  | μg/l          | μg/l          | μg/l                 |
| nicht messbar (E          | xtrakt bildet ein Ge  | el)                      |                    |                       |               |               |                      |
| PCB 180                   | PCB 77                | PCB 105                  | PCB 118            | PCB 126               | PCB 169       | PCB 189       |                      |
| ua/l                      | ug/l                  | μg/l                     | µg/l               | µg/l                  | µg/l          | µg/l          |                      |
| nicht messbar (E          | xtrakt bildet ein Ge  |                          | ·                  |                       |               |               |                      |
| Naphthalin                | Acenaphthylen         | Acenaphten               | Fluoren            | Phenanthren           | Anthracen     | Fluoranthen   | Pyren                |
| µg/l                      | µg/l                  | µg/l                     | µg/l               | µg/l                  | μg/l          | µg/l          | μg/l                 |
|                           | xtrakt bildet ein Ge  |                          | r S                | r J                   |               | 1 1           | r J                  |
| •                         |                       | •                        |                    |                       |               |               |                      |
| Benzo(a)anthrac           | Chrysen               | Benzo(b)-                | Benzo(k)-          | Benzo(a)-pyren        | Indeno(1,2,3- | Dibenz(a,h)-  | Benzo(g,h,i)         |
| en                        |                       | fluoranthen              | fluoranthen        |                       | cd)-pyren     | anthracen     | perylen              |
| μg/l                      | μg/l                  | μg/l                     | μg/l               | μg/l                  | μg/l          | μg/l          | μg/l                 |
| nicht messbar (E          | xtrakt bildet ein Ge  | el)                      |                    |                       |               |               |                      |
| Biphenyl                  | Benzol                | Toluol                   | Ethylbenzol        | m-/p-Xylol            | o-Xylol       | Dichlormethan | 1,1-<br>Dichlorethen |
| μg/l                      | μg/l                  | μg/l                     | μg/l               | μg/l                  | μg/l          | μg/l          | μg/l                 |
| -                         | 0,6                   | <                        | 0,9                | 8,1                   | 7,65          | <             | <                    |
|                           |                       | I =                      |                    |                       |               | T =           |                      |
| cis-1,2-                  | trans-1,2-            | Trichlormethan           | 1,1,1-             | Tetrachlor-methan     | 1,2-          | Trichlorethen | Bromdichlor          |
| Dichlorethen              | Dichlorethen          | 110-11                   | Trichlorethan      | 110 11                | Dichlorethan  |               | methan               |
| μg/l                      | μg/l                  | μg/l                     | μg/l               | μg/l                  | μg/l          | μg/l          | μg/l                 |
| <                         | <                     | <                        | <                  | <                     | <             | <             | <                    |
| 1,1,2-                    | Tetrachlorethen       | Dibromchlor-             | Tribrom-           | 1,2-Dichlorbenzol     | 1,3-          | 1,4-          | KW-Index             |
| Trichlorethan             |                       | methan                   | methan             | <u> </u>              | Dichlorbenzol | Dichlorbenzol | (H53)                |
| μg/l                      | μg/l                  | μg/l                     | μg/l               | μg/l                  | μg/l          | μg/l          | mg/l                 |
| <                         | <                     | <                        | <                  | <                     | <             | <             | -                    |

© LfU Anhang 83

| ofälle aus HZVA  | und Entfernung vol  | n Farben und Lack | en - wässrige Schlä      | mme             | Ifd Nr.     | EAV           | Datum       |
|------------------|---------------------|-------------------|--------------------------|-----------------|-------------|---------------|-------------|
| e Farben oder La | acke enthalten, mit | Ausnahme derjeni  | ger, die unter 08011     | 15 fallen.      | 13          | 080116        | 12.09.2002  |
|                  |                     | Chem              | nische Charakter         | isierung - Fest | stoff       |               |             |
| Arsen            | Blei                | Cadmium           | Chrom                    | Kupfer          | Nickel      | Quecksilber   | Zink        |
| mg/kg            | mg/kg               | mg/kg             | mg/kg                    | mg/kg           | mg/kg       | mg/kg         | mg/kg       |
| 3                | 1,3                 | 0,15              | 250                      | 170             | 5,5         | <0,05         | 140         |
| Kohlenwa         | sserstoffe          | lipophile Stoffe  | TOC                      | Benzol          | Toluol      | Ethylbenzol   | Xylol       |
| GE               | W.%                 | Gew.%             | Gew.%                    | mg/kg           | mg/kg       | mg/kg         | mg/kg       |
| 2                | 20                  | 21                | 55,1                     | <0,01           | <0,01       | 0,17          | 2,3         |
| Summe BTEX       | Naphthalin          | Acenaphten        | Acenaphtylen             | Fluoren         | Phenanthren | Anthracen     | Fluoranther |
| mg/kg            | mg/kg               | mg/kg             | mg/kg                    | mg/kg           | mg/kg       | mg/kg         | mg/kg       |
| 2,47             | 10                  | <0,1              | <0,1                     | 48              | 11          | <0,1          | <0,1        |
| Pyren            | Benz(a)a            | nthracen          | Chrysen                  | Benzo(b)fl      | uoranthen   | Benzo(k)fl    | uoranthen   |
| mg/kg            | . ,                 | /kg               | mg/kg                    | mg              |             | mg            |             |
| 0,22             | <0                  |                   | 0,11                     | <0              |             | <0            |             |
| Dibenz(ah        | )anthracen          | Benzo(gh          | i)pervlen                | Indeno(1,2,     | 3-cd)pvren  | Benzo(a)pyren | I AOX       |
| mo               | g/kg                | mg/               | /kg                      | mg              | /kg         | mg/kg         | mg/kg       |
| <                | g/kg<br>0,1         | <Ŏ                | mg/kg mg/kg<br><0,1 <0,1 |                 | ,1          | <0,1          | 1260        |

## Bemerkungen

pastös, schwarz-grau, mit Wasserphase, Geruch leicht nach Lösungsmittel



Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenbearbeitung von Metallen und Kunststoffen - Bearbeitungsschlämme, die gefährliche Stoffe beinhalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 14      | 120114 | 12.09.2002 |

### Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 80                    | 2,7                     | 3,4                     | ja        |
| 100        | 80                    | 2,4                     | 1,6                     | ja        |
|            |                       |                         |                         |           |
| Median     | 80                    | 2,5                     | 2,5                     | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | >10                   | -                       | -                       | -                       | ja        |
| 100        | >20                   | 3,5                     | 4,2                     | 5,9                     | ja        |
| 100        | 80                    | -                       | -                       | -                       | ja        |
| Median     | 80                    | 3,5                     | 4,2                     | 5,9                     | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 47,3       | 8                     | 14,5                    | 51,2                    | ja        |
| 45,7       | 8                     | 17,1                    | 53,5                    | ja        |
|            |                       |                         |                         |           |
| Median     | 8                     | 15,8                    | 52,4                    | ja        |

Bakterienkontakttest - Eluat

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 97,8       | -                     | ja        |
| 94,7       | >100                  | ja        |
|            |                       |           |
| Median     | >100                  | ja        |

|                 | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|-----------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica        | <16                     | >256                                | >256                          | ja        |
|                 | -                       | 32                                  | 32                            | ja        |
| Lycopersicon    | <16                     | 32                                  | 64                            | ja        |
|                 | >128                    | >128                                | 32                            | ja        |
| Avena           | <16                     | <16                                 | <16                           | ja        |
|                 | >128                    | 16                                  | -                             | ja        |
| repräsentativst | er G <sub>P</sub> -Wert |                                     |                               | 32        |

| ımu-Test - Eluat ohne S9 |  |
|--------------------------|--|
|                          |  |

| umu-Test - Elua | at ohne S9 |          |              | Eluat mit S9 |          |          |              |
|-----------------|------------|----------|--------------|--------------|----------|----------|--------------|
|                 | GEU        | VD       | Gentoxizität |              | GEU      | VD       | Gentoxizität |
|                 | IR < 1,5   | IR < 1,5 | GEU > 1,5    |              | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|                 | 1,5        | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                 | 6          | 0,17     | ja           |              | 1,5      | 0,67     | nein         |
|                 | 1,5        | 0,67     | nein         |              |          |          |              |
| Median          | 1,5        | 0,67     | nein         | Median       | 1,5      | 0,67     | nein         |

|                    |                     | I                | Datenblatt Pr   | obe Nr. 14       |               |               |               |
|--------------------|---------------------|------------------|-----------------|------------------|---------------|---------------|---------------|
| Abfälle aus Prozes | ssen der mechanisc  | hen Formgebung   | sowie der physi | ka-              | lfd Nr.       | EAV           | Datum         |
|                    | anischen Oberfläche |                  |                 |                  | 14            | 120114        | 12.09.2002    |
|                    | ungsschlämme, die   |                  |                 |                  |               |               |               |
|                    |                     | Chemis           | sche Charakte   | erisierung - Elu | ıat           |               |               |
| Trockengewicht     | Wassergehalt %      | На               | LF μS/cm        | 1                |               |               |               |
| 89,85              | 10,15               | 10,6 eing. auf 7 | 478             | ]                |               |               |               |
| DOC                | тос                 | NH4              | Quecksilber     | Cadmium          | Chrom         | Nickel        | Kupfer        |
| mg/l               | mg/l                | mg/L             | μg/l            | μg/l             | μg/l          | μg/l          | μg/l          |
| 30                 | -                   | 0,23             | -               | 0,1              | 2,2           | 37,9          | 113           |
| Blei               | Zink                | Mangan           | Arsen           | Cobalt           | AOX           | 1             |               |
| µg/l               | μg/l                | µg/l             | µg/L            | µg/l             | mg/l          |               |               |
| 18.8               | 26400               | 173              | <0.5            | 1.8              | 0.05          |               |               |
| , .                |                     |                  |                 | .,.              | -,,,,         | 1             |               |
| PCB 8              | HCH                 | PCB 18           | PCB 28          | PCB 52           | PCB 101       | PCB 138       | PCB 153       |
| μg/l               | μg/l                | μg/l             | μg/l            | μg/l             | μg/l          | μg/l          | μg/l          |
| <                  | <                   | <                | <               | 0,029            | 0,13          | 0,2           | 0,12          |
|                    |                     |                  |                 |                  |               |               |               |
| PCB 180            | PCB 77              | PCB 105          | PCB 118         | PCB 126          | PCB 169       | PCB 189       |               |
| μg/l               | μg/l                | μg/l             | μg/l            | μg/l             | μg/l          | μg/l          |               |
| 0,008              | <                   | 0,037            | <               | <                | <             | <             |               |
|                    |                     |                  |                 |                  |               |               |               |
| Naphthalin         | Acenaphthylen       | Acenaphten       | Fluoren         | Phenanthren      | Anthracen     | Fluoranthen   | Pyren         |
| μg/l               | μg/l                | μg/l             | μg/l            | μg/l             | μg/l          | μg/l          | μg/l          |
| 0,12               | 0,012               | 0,029            | 0,009           | 0,032            | 0,004         | 0,034         | 0,031         |
|                    | ·                   |                  |                 | T                |               | T =           |               |
| Benzo(a)-          | Chrysen             | Benzo(b)-        | Benzo(k)-       | Benzo(a)-pyren   | Indeno(1,2,3- | Dibenz(a,h)-  | Benzo(g,h,i)- |
| anthracen          | ,                   | fluoranthen      | fluoranthen     | ,                | cd)-pyren     | anthracen     | perylen       |
| μg/l<br>0.006      | μg/l<br>0.011       | μg/l<br><        | μg/l<br><       | μg/l<br><        | μg/l<br><     | μg/l<br>0.005 | μg/l<br>0,009 |
| 0,006              | 0,011               | `                | `               | `                | `             | 0,005         | 0,009         |
| Biphenyl           | Benzol              | Toluol           | Ethylbenzol     | m-/p-Xylol       | o-Xylol       | Dichlor-      | 1.1-          |
| Бірпепуі           | Delizoi             | Toluoi           | Ethylbenzor     | III-/p-Ayloi     | U-Aylui       | methan        | Dichlorethen  |
| µg/l               | μg/l                | μg/l             | μg/l            | μg/l             | μg/l          | μq/l          | µg/l          |
| 0,001              | γς/1                | γς/-             | γς/1            | γς/              | γς,           | γς/1          | ζ             |
| ,                  | •                   |                  |                 | '                |               | •             | •             |
| cis-1,2-           | trans-1,2-          | Trichlor-        | 1,1,1-          | Tetrachlor-      | 1,2-          | Trichlorethen | Bromdichlor-  |
| Dichlorethen       | Dichlorethen        | methan           | Trichlorethan   | methan           | Dichlorethan  |               | methan        |
| μg/l               | μg/l                | μg/l             | μg/l            | μg/l             | μg/l          | μg/l          | μg/l          |
| <                  | <                   | <                | <               | <                | <             | <             | <             |
|                    |                     |                  |                 |                  |               |               |               |
| 1,1,2-             | Tetrachlorethen     | Dibromchlor-     | Tribrom-        | 1,2-             | 1,3-          | 1,4-          | KW-Index      |
| Trichlorethan      |                     | methan           | methan          | Dichlorbenzol    | Dichlorbenzol | Dichlorbenzol | (H53)         |
| μg/l               | μg/l                | μg/l             | μg/l            | μg/l             | μg/l          | μg/l          | mg/l          |
| <                  | <                   | <                | <               | <                | <             | <             | -             |

Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenbearbeitung von Metallen und Kunststoffen - Bearbeitungsschlämme, die gefährliche Stoffe beinhalten.

| lfa Nr. | EAV    | Datum      |
|---------|--------|------------|
| 14      | 120114 | 12.09.2002 |

## Chemische Charakterisierung - Feststoff

| Arsen    | Blei        | Cadmium          | Chrom | Kupfer | Nickel | Quecksilber | Zink  |
|----------|-------------|------------------|-------|--------|--------|-------------|-------|
| mg/kg    | mg/kg       | mg/kg            | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 15       | 4,4         | 0,22             | 160   | 360    | 120    | <0,05       | 77000 |
|          | •           | •                |       |        |        | -           |       |
| Kohlenwa | asserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
| GE       | :W.%        | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0        | ,27         | 0.44             | 1.8   | <0.01  | <0.01  | 0.01        | 0.13  |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 0.14       | <0.1       | <0.1       | <0.1         | <0.1    | <0.1        | <0.1      | <0.1        |


| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| <0.1  | <0.1             | <0.1    | <0.1                | <0.1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0.1                | <0.1              | <0.1                  | <0.1          | <1    |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| 0,5                    | <1                 |

## <u>Bemerkungen</u>

pulvrig, schwarz, Geruch leicht nach Lösungsmitteln



Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenbearbeitung von Metallen und Kunststoffen - Strahlmittelabfälle, die gefährliche Stoffe enthalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 16      | 120116 | 10.10.2002 |

## Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| -1,1       | 1,25                  | -                       | -                       | nein      |
| -4,8       | 1,25                  | -                       | -                       | nein      |
|            |                       |                         |                         |           |
| Median     | 1,25                  | -                       | -                       | nein      |

Daphnientest - Eluat

| Dapiniontoot L |                       |                         |                         |                         |           |
|----------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| 100%-Probe     | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
| [%Hemmung]     |                       | [%]                     | [%]                     | [%]                     |           |
| 0              | 1                     | -                       | -                       | -                       | nein      |
| 0              | 1                     | -                       | -                       | -                       | nein      |
|                |                       |                         |                         |                         |           |
| Median         | 1                     | -                       | -                       | -                       | nein      |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>∟</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |  |  |  |  |  |  |
|------------|-----------------------|-------------------------|-------------------------|-----------|--|--|--|--|--|--|
| [%Hemmung] |                       | [%]                     | [%]                     |           |  |  |  |  |  |  |
| 5,9        | 2                     | -                       | -                       | nein      |  |  |  |  |  |  |
| 11,8       | 2                     | 81,7                    |                         | nein      |  |  |  |  |  |  |
|            |                       |                         |                         |           |  |  |  |  |  |  |
| Median     | 2                     | 81,7                    | -                       | nein      |  |  |  |  |  |  |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 80,29      | 1                     | ja        |
| 56,41      | 2-100                 | ja        |
| 70,36      | 10-100                | ja        |
| Median     | 2-10                  | ja        |

Pflanzentest - Gesamtprobe

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | 16                      | 4                                   | 8                             | ja        |
|                  | 2                       | 2                                   | 2                             | ja        |
| Lycopersicon     | -                       | 4                                   | 4                             | ja        |
|                  | 2                       | 4                                   | 4                             | ja        |
| Avena            | 32                      | 4                                   | 4                             | ja        |
|                  | -                       | 2                                   | 16                            | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 4         |

umu-Test - Eluat ohne S9 Eluat mit S9

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                    |                                             |              | Datenblatt P  | rohe Nr. 16      |               |               |                        |
|--------------------|---------------------------------------------|--------------|---------------|------------------|---------------|---------------|------------------------|
| Al-fulls and Danse |                                             | .h F         |               |                  | If at Nin     | EAV           | Detum                  |
|                    | ssen der mechaniso                          |              |               |                  | Ifd Nr.       |               | Datum                  |
|                    | anischen Oberfläch<br>telabfälle, die gefäh |              |               | Kunst-           | 16            | 120116        | 10.10.2002             |
|                    |                                             | Chemi        | sche Charak   | terisierung - El | uat           |               |                        |
| Trockengewicht     | Wassergehalt %                              | рН           | LF μS/cm      | l                |               |               |                        |
| 100                | 0                                           | 8,15         | 39,5          | j                |               |               |                        |
| DOC                | тос                                         | NH4          | Quecksilber   | Cadmim           | Chrom,        | Nickel        | Kupfer                 |
| mg/l               | mg/l                                        | mg/L         | μg/l          | μg/l             | μg/l          | μg/l          | μg/l                   |
| 13                 | -                                           | 0,46         | <0,05         | <0,1             | <0,5          | 38,7          | 4,1                    |
| Blei               | Zink                                        | Mangan       | Arsen         | Cobalt           | AOX           |               |                        |
| µg/l               | μg/l                                        | μg/l         | µg/L          | µg/l             | mg/l          |               |                        |
| 4,29               | 58                                          | 198          | 49/Σ<br><0,5  | 1,7              | 0,05          |               |                        |
| 7,20               | 30                                          | 190          | -0,0          | 1,1              | 0,00          | I             |                        |
| PCB 8              | HCH                                         | PCB 18       | PCB 28        | PCB 52           | PCB 101       | PCB 138       | PCB 153                |
| μg/l               | μg/l                                        | μg/l         | μg/l          | μg/l             | μg/l          | μg/l          | μg/l                   |
| <                  | <                                           | <            | <             | <                | 0,012         | 0,026         | 0,012                  |
|                    |                                             |              |               |                  |               |               |                        |
| PCB 180            | PCB 77                                      | PCB 105      | PCB 118       | PCB 126          | PCB 169       | PCB 189       |                        |
| μg/l               | μg/l                                        | μg/l         | μg/l          | μg/l             | μg/l          | μg/l          |                        |
| 0,002              | <                                           | 0,001        | <             | <                | <             | <             |                        |
| Naphthalin         | Acenaphthylen                               | Acenaphten   | Fluoren       | Phenanthren      | Anthracen     | Fluoranthen   | Pyren                  |
| μg/l               | μg/l                                        | μg/l         | μg/l          | μg/l             | μg/l          | μg/l          | μg/l                   |
| 0,2                | 0,003                                       | 0,006        | 0,01          | 0,024            | 0,001         | 0,009         | 0,009                  |
| Benzo(a)-          | Chrysen                                     | Benzo(b)-    | Benzo(k)-     | Benzo(a)-pyren   | Indeno(1,2,3- | Dibenz(a,h)-  | Benzo(g,h,i)-          |
| anthracen          | Ciliyseii                                   | fluoranthen  | fluoranthen   | Delizo(a)-pyreii | cd)-pyren     | anthracen     |                        |
| µg/l               | μg/l                                        | µg/l         | µg/l          | μg/l             | ug/l          | μg/l          | <b>perylen</b><br>μg/l |
| 0.001              | 0.002                                       | 0.002        | 0.003         | 0.001            | μ9/1          | μg/1          | μ <u>g</u> /1          |
| 0,001              | 0,002                                       | 0,002        | 0,003         | 0,001            |               | ,             |                        |
| Biphenyl           | Benzol                                      | Toluol       | Ethylbenzol   | m-/p-Xylol       | o-Xylol       | Dichlormethan | 1,1-                   |
|                    |                                             |              | -             | -                |               |               | Dichlorethen           |
| μg/l               | μg/l                                        | μg/l         | μg/l          | μg/l             | μg/l          | μg/l          | μg/l                   |
| 0,003              | <                                           | <            | <             | <                | <             | <             | <                      |
|                    |                                             |              |               |                  |               |               |                        |
| cis-1,2-           | trans-1,2-                                  | Trichlor-    | 1,1,1-        | Tetrachlor-      | 1,2-          | Trichlorethen | Bromdichlor-           |
| Dichlorethen       | Dichlorethen                                | methan       | Trichlorethan | methan           | Dichlorethan  |               | methan                 |
| μg/l               | μg/l                                        | μg/l         | μg/l          | μg/l             | μg/l          | μg/l          | μg/l                   |
| <                  | <                                           | <            | <             | <                | <             | <             | <                      |
| 1.1.2-             | Tetrachlorethen                             | Dibromchlor- | Tribrom-      | 1.2-             | 1.3-          | 1.4-          | KW-Index               |
| Trichlorethan      | . su acinoi euieli                          | methan       | methan        | Dichlorbenzol    | Dichlorbenzol | Dichlorbenzol | (H53)                  |
| µg/l               | μg/l                                        | µg/l         | µg/l          | µg/l             | µg/l          | µg/l          | mg/l                   |
| μg/1               | μ9/1                                        | γς/1         | γς/1          | γ9/1             | <u>μ</u> σ/1  | γς/           | -                      |
|                    | ·                                           |              |               |                  |               |               |                        |

© LfU Anhang 89

# Datenblatt Probe Nr. 16

Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenbearbeitung von Metallen und Kunststoffen - Strahlmittelabfälle, die gefährliche Stoffe enthalten.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 16      | 120116 | 10.10.2002 |

# Chemische Charakterisierung - Feststoff

| Arsen    | Blei       | Cadmium          | Chrom  | Kupfer | Nickel | Quecksilber | Zink  |
|----------|------------|------------------|--------|--------|--------|-------------|-------|
| mg/kg    | mg/kg      | mg/kg            | mg/kg  | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 62       | 12         | 0,04             | 177000 | 4900   | 83300  | 0,35        | 2300  |
|          |            |                  |        |        |        |             |       |
| Kohlonwa | ccorctoffo | linophilo Stoffo | TOC    | Ponzol | Toluol | Ethylbonzol | Yylol |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,014              | 0,024            | 0,3   | <0,01  | <0,01  | 0,04        | 0,27  |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 0,31       | <0,1       | <0,1       | <0,1         | <0,1    | <0,1        | <0,1      | <0,1        |

| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| <0,1  | <0,1             | <0,1    | <0,1                | <0,1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0,1                | <0,1              | <0,1                  | <0,1          | 2     |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| <0,1                   | <1                 |

### <u>Bemerkungen</u>

Strahlmittel aus Edelstahl, pulvrig, grau



Abfälle aus chemischen Oberflächenbehandlung und Beschichtung von Metallen und anderen Werkstoffen - Schlämme und Filterkuchen mit Ausnahme derjeniger, die unter 110109 fallen.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 17      | 110110 | 16.10.2002 |

# Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 50,8       | 6                     | 13,6                    | 70,5                    | ja        |
| 79,6       | 10                    | 10,4                    | 27,1                    | ja        |
| 81,2       | 4                     | 30,3                    | 48,6                    | ja        |
| Median     | 6                     | 13,6                    | 48,6                    | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 20         | 2                     | -                       | -                       | 1                       | ja        |
| 10         | 1                     | -                       | -                       | -                       | nein      |
|            |                       |                         |                         |                         |           |
| Median     | 1,5                   | -                       | -                       | -                       | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>∟</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 11,9       | 2                     | 106,2                   | -                       | nein      |
| 10,2       | 2                     | -                       | -                       | nein      |
|            |                       |                         |                         |           |
| Median     | 2                     | 106,2                   | -                       | nein      |

Bakterienkontakttest - Gesamtprobe

| 50%-Probe  | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 75,9       | 1                     | ja        |
| 71,7       | 10-100                | ja        |
| 78,1       | 10-100                | ja        |
| Median     | 10-100                | ja        |

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | -                       | 2                                   | 2                             | nein      |
|                  | 2                       | 2                                   | 2                             | nein      |
| Lycopersicon     | 2                       | 4                                   | 4                             | ja        |
|                  | 8                       | 8                                   | 8                             | ja        |
| Avena            | -                       | 2                                   | 2                             | nein      |
|                  | 4                       | 4                                   | -                             | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 8         |

| IIMII-Tast. | - Eluat ohne S9 |  |
|-------------|-----------------|--|
|             |                 |  |

| ΕI | uat | mit | S9 |
|----|-----|-----|----|
| _  | uaı |     | J  |

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                     |                   |                | Datenblatt      | Probe Nr. 17   |               |               |                  |
|---------------------|-------------------|----------------|-----------------|----------------|---------------|---------------|------------------|
| Abfälle aus chemis  | schen Oberflächen | behandlung und | Beschichtung vo | n Metallen     | lfd Nr.       | EAV           | Datum            |
|                     | stoffen - Schlämm |                |                 |                | 17            | 110110        | 16.10.2002       |
| eniger, die unter 1 | 10109 fallen.     |                |                 |                |               |               |                  |
|                     |                   | Chei           | mische Chara    | kterisierung - | Eluat         |               |                  |
| Trockengewicht      | Wassergehalt %    | рН             | LF μS/cm        |                |               |               |                  |
| 22,1                | 77                | 7,8            | 4900            |                |               |               |                  |
| DOC                 | тос               | NH4            | Hg              | Cd             | Cr            | Ni            | Cu               |
|                     |                   |                |                 |                |               |               |                  |
| mg/l<br>56          | mg/l<br>-         | mg/L<br>0,03   | μg/l            | μg/l<br><0.1   | μg/l<br><0.5  | μg/l<br>121   | μg/l<br>11,4     |
| 30                  | -                 | 0,03           | <u> </u>        | <b>\0,1</b>    | <b>\0,</b> 5  | 121           | 11,4             |
| Pb                  | Zn                | Mn             | As              | Со             | AOX           | 1             |                  |
| μg/l                | μg/l              | μg/l           | μg/L            | μg/l           | mg/l          | 1             |                  |
| 2,57                | 110               | 132            | <0,5            | 1              | 0,02          | 1             |                  |
|                     |                   |                |                 |                |               | -             |                  |
| PCB 8               | HCH               | PCB 18         | PCB 28          | PCB 52         | PCB 101       | PCB 138       | PCB 153          |
| μg/l                | μg/l              | μg/l           | μg/l            | μg/l           | μg/l          | μg/l          | μg/l             |
| <                   | <                 | <              | <               | 0,005          | 0,013         | 0,023         | 0,022            |
| PCB 180             | PCB 77            | PCB 105        | PCB 118         | PCB 126        | PCB 169       | PCB 189       |                  |
| μg/l                | μg/l              | μg/l           | μg/l            | μg/l           | µg/l          | μg/l          |                  |
| γς                  | γς,               | <u>μ</u> g/··  | γς.             | κ9/1           | κς            | κηση.         |                  |
|                     |                   |                |                 |                |               | •             |                  |
| Naphthalin          | Acenaphthylen     | Acenaphten     | Fluoren         | Phenanthren    | Anthracen     | Fluoranthen   | Pyren            |
| μg/l                | μg/l              | μg/l           | μg/l            | μg/l           | μg/l          | μg/l          | μg/l             |
| 0,047               | 0,002             | 0,027          | 0,02            | 0,13           | <             | 0,036         | 0,021            |
|                     |                   |                |                 |                |               |               |                  |
| Benzo(a)-           | Chrysen           | Benzo(b)-      | Benzo(k)-       | Benzo(a)-pyren | Indeno(1,2,3- | Dibenz(a,h)-  | Benzo(g,h,i)-    |
| anthracen           |                   | fluoranthen    | fluoranthen     |                | cd)-pyren     | anthracen     | perylen          |
| μg/l                | μg/l              | μg/l           | μg/l            | μg/l           | μg/l          | μg/l          | μg/l             |
| <                   | 0,004             | 0,002          | 0               | 0,003          | <             | <             | <                |
| Biphenyl            | Benzol            | Toluol         | Ethylbenzol     | m-/p-Xylol     | o-Xylol       | Dichlormethan | 1,1-Dichlorether |
| μg/l                | µg/l              | µg/l           | µg/l            | μg/l           | μg/l          | µg/l          | μg/l             |
| μg/1<br><           | μ9/1              | <u>μ</u> σ/1   | μg/1            | μ9/1           | μς/1          | γ9/1          | μg/1<br><        |
| -                   |                   |                |                 |                |               |               |                  |
| cis-1,2-            | trans-1,2-        | Trichlor-      | 1,1,1-          | Tetrachlor-    | 1,2-          | Trichlorethen | Bromdichlor-     |
| Dichlorethen        | Dichlorethen      | methan         | Trichlorethan   | methan         | Dichlorethan  |               | methan           |
| μg/l                | μg/l              | μg/l           | μg/l            | μg/l           | μg/l          | μg/l          | μg/l             |
| <                   | <                 | <              | <               | <              | <             | <             | <                |
|                     |                   |                |                 |                |               |               |                  |
| 1,1,2-              | Tetrachlor-ethen  | Dibromchlor-   | Tribrom-        | 1,2-           | 1,3-          | 1,4-          | KW-Index (H53)   |
| Trichlorethan       |                   | methan         | methan          | Dichlorbenzol  | Dichlorbenzol | Dichlorbenzol |                  |
| μg/l                | μg/l              | μg/l           | μg/l            | μg/l           | μg/l          | μg/l          | mg/l             |
| <                   | <                 | <              | <               | <              | <             | <             | -                |

Abfälle aus chemischen Oberflächenbehandlung und Beschichtung von Metallen und anderen Werkstoffen - Schlämme und Filterkuchen mit Ausnahme derjeniger, die unter 110109 fallen.

| Ifd Nr. EAV | Datum      |
|-------------|------------|
| 17 110110   | 16.10.2002 |

## Chemische Charakterisierung - Feststoff

| Arsen | Blei  | Cadmium | Chrom | Kupter | Nickel | Quecksilber | Zink  |
|-------|-------|---------|-------|--------|--------|-------------|-------|
| mg/kg | mg/kg | mg/kg   | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 12    | 83    | <0,01   | 200   | 730    | 47     | <0,05       | 340   |
|       |       |         |       |        |        |             |       |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,021              | 0,021            | 1,6   | <0,01  | <0,01  | <0,01       | <0,01 |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| <0.04      | <0,1       | <0,1       | <0,1         | <0,1    | <0,1        | <0,1      | 0,38        |


| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| 0,16  | <0,1             | <0,1    | <0,1                | <0,1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0,1                | <0,1              | <0,1                  | <0,1          | 9     |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| 3,2                    | <1                 |

## Bemerkungen

körnig, blau



| Datenblatt Probe Nr. 18                                                   |         |        |            |
|---------------------------------------------------------------------------|---------|--------|------------|
| Abfälle aus Abwasserbehandlungsanlagen - Schlämme, die gefährliche Stoffe | lfd Nr. | EAV    | Datum      |
| aus einer anderen Behandlung von industriellem Abwasser enthalten         | 18      | 190813 | 17.10.2002 |

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 99,9       | >4                    | -                       | -                       | ja        |
| 100        | 200,0                 | 0,7                     | 1,0                     | ja        |
| 100        | 200,0                 | 0,9                     | 1,1                     | ja        |
| Median     | 200,0                 | 0,8                     | 1,0                     | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 20,0                  | 3,1                     | 3,7                     | 5,3                     | ja        |
| 100        | 10,0                  | 10,6                    | 12,2                    | 15,9                    | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 15,0                  | 6,8                     | 8,0                     | 10,6                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 32                    | 3,7                     | 9,6                     | ja        |
| 100        | 64                    | 2,4                     | 7,7                     | ja        |
|            |                       |                         |                         |           |
| Median     | 48                    | 3,0                     | 8,7                     | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 96,8       | -                     | ja        |
| 98,4       | 10-100                | ja        |
|            |                       |           |
| Median     | 10-100                | ja        |

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | >1024                   | 256                                 | 256                           | ja        |
|                  | -                       | <256                                | <256                          | -         |
| Lycopersicon     | 1024                    | 256                                 | 256                           | ja        |
|                  | <256                    | <256                                | <256                          | -         |
| Avena            | >1024                   | 256                                 | >1024                         | ja        |
|                  | >4096                   | 1024                                | =                             | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 256       |

| umu-Test - Eluat | ohne S9  |          |              | Eluat mit S9 |          |          |              |
|------------------|----------|----------|--------------|--------------|----------|----------|--------------|
|                  | GEU      | VD       | Gentoxizität |              | GEU      | VD       | Gentoxizität |
|                  | IR < 1,5 | IR < 1,5 | GEU > 1,5    |              | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|                  | 1,5      | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                  | 1,5      | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                  |          |          |              |              |          |          |              |
| Median           | 1,5      | 0,67     | nein         | Median       | 1,5      | 0,67     | nein         |

|                   |                         |                       | Detemblett F    | Nucha Nu. 40                          |               |                   |                       |
|-------------------|-------------------------|-----------------------|-----------------|---------------------------------------|---------------|-------------------|-----------------------|
| Abfälla aug Abwas | a a sha han dhun a a an | lagan Cablamm         | Datenblatt F    |                                       | ita Na        | FAV.              | Detum                 |
|                   | sserbehandlungsan       | •                     |                 | e Storie                              | Ifd Nr.       | EAV               | Datum                 |
| aus einer anderen | Behandlung von ir       | ndustriellem Abwa     | asser enthalten |                                       | 18            | 190813            | 17.10.2002            |
|                   |                         | Chem                  | ische Charak    | terisierung - Elu                     | ıat           |                   |                       |
| Trockengewicht    | Wassergehalt %          | рН                    | LF µS/cm        |                                       |               |                   |                       |
| 59,6              | 40,4                    | 9 eing. auf 7,5       | 3170            |                                       |               |                   |                       |
| DOC               | TOC                     | NH4                   | Quecksilber     | Cadmium                               | Chrom,        | Nickel            | Kupfer                |
| mg/l              | mg/l                    | mg/L                  | μg/l            | μg/l                                  | μg/l          | μg/l              | μg/l                  |
| 390               | -                       | 19                    |                 | <0,1                                  | <0,5          | 93,5              | 78,8                  |
| DI-1              | 711.                    |                       | A               | 0-1-14                                | 100           | 1                 |                       |
| Blei              | Zink                    | Mangan                | Arsen           | Cobalt                                | AOX           |                   |                       |
| μg/l              | μg/l                    | μg/l                  | μg/L            | μg/l                                  | mg/l          |                   |                       |
| 2,87              | 31                      | 37                    | <0,5            | 35,9                                  | 2,1           | J                 |                       |
| PCB 8             | НСН                     | PCB 18                | PCB 28          | PCB 52                                | PCB 101       | PCB 138           | PCB 153               |
| μg/l              | μg/l                    | μg/l                  | μg/l            | μg/l                                  | μg/l          | μg/l              | μg/l                  |
| <                 | <                       | <                     | <               | <                                     | <             | <                 | <                     |
|                   |                         |                       |                 |                                       |               |                   | 1                     |
| PCB 180           | PCB 77                  | PCB 105               | PCB 118         | PCB 126                               | PCB 169       | PCB 189           |                       |
| μg/l              | μg/l                    | μg/l                  | μg/l            | μg/l                                  | μg/l          | μg/l              |                       |
| <                 | <                       | <                     | <               | <                                     | <             | <                 |                       |
| Naphthalin        | Acenaphthylen           | Acenaphten            | Fluoren         | Phenanthren                           | Anthracen     | Fluoranthen       | Pyren                 |
| μg/l              | μg/l                    | μg/l                  | μg/l            | μg/l                                  | μg/l          | μg/l              | μg/l                  |
| 0,075             | <                       | <                     | <               | 0,015                                 | <             | n.b.              | n.b.                  |
| Benzo(a)-         | Chrysen                 | Benzo(b)-             | Benzo(k)-       | Benzo(a)-pyren                        | Indeno(1,2,3- | Dibenz(a,h)-      | Benzo(g,h,i)-         |
| anthracen         | Omysen                  | fluoranthen           | fluoranthen     | Delizo(a)-pyreli                      | cd)-pyren     | anthracen         | perylen               |
| μg/l              | μg/l                    | μg/l                  | μg/l            | μg/l                                  | μg/l          | μg/l              | μg/l                  |
| n.b.              | n.b.                    | <u>μ</u> g/ι          | μ <u>σ</u> /1   | γς/1                                  | μg/1          | μg/1              | μg/1                  |
| 11.0.             | 11.0.                   | -                     |                 |                                       |               | 1                 | ,                     |
| Biphenyl          | Benzol                  | Toluol                | Ethylbenzol     | m-/p-Xylol                            | o-Xylol       | Dichlor-          | 1,1-                  |
| ,                 |                         |                       | -               |                                       | -             | methan            | Dichlorethen          |
| μg/l              | μg/l                    | μg/l                  | μg/l            | μg/l                                  | μg/l          | μg/l              | μg/l                  |
| 0,005             | 76                      | 160                   | 0,4             | 3,34                                  | 1,34          | <                 | <                     |
| cis-1,2-          | trans-1,2-              | Trichlor-             | 1,1,1-          | Tetrachlor-                           | 1.2-          | Trichlorethen     | Bromdichlor-          |
| Dichlorethen      | Dichlorethen            | methan                | Trichlorethan   | methan                                | Dichlorethan  | 111CIIIOI ELIIEII | methan                |
| µg/l              | µg/l                    | <u>methan</u><br>μg/l | µg/l            | μg/l                                  | µg/l          | μg/l              | <u>methan</u><br>μg/l |
| μg/i<br><         | μg/i<br><               | 0,146                 | μg/i<br><       | μg/i<br><                             | μg/i<br><     | μg/i<br><         | μg/i<br><             |
| 7                 | -                       | 0,170                 | •               | · · · · · · · · · · · · · · · · · · · |               |                   | •                     |
| 1,1,2-            | Tetrachlor-ethen        | Dibromchlor-          | Tribrom-        | 1,2-Dichlorbenzol                     | 1,3-          | 1,4-              | KW-Index              |
| Trichlorethan     |                         | methan                | methan          |                                       |               | Dichlorbenzol     | (H53)                 |
| μg/l              | μg/l                    | μg/l                  | μg/l            | μg/l                                  | μg/l          | μg/l              | mg/l                  |
| <                 | <                       | <                     | <               | <                                     | <             | <                 | -                     |

© LfU Anhang 95

| ofälle aus Abwas | ille aus Abwasserbehandlungsanlagen - Schlämme, die gefährliche Stoffe |                   |                 |                     |             | EAV                 | Datum      |
|------------------|------------------------------------------------------------------------|-------------------|-----------------|---------------------|-------------|---------------------|------------|
| us einer anderen | Behandlung von i                                                       | ndustriellem Abwa | asser enthalten |                     | 18          | 190813              | 17.10.2002 |
|                  | -                                                                      | Chemis            | che Charakteri  | sierung - Fes       | tstoff      |                     |            |
| Arsen            | Blei                                                                   | Cadmium           | Chrom           | Kupfer              | Nickel      | Quecksilber         | Zink       |
| mg/kg            | mg/kg                                                                  | mg/kg             | mg/kg           | mg/kg               | mg/kg       | mg/kg               | mg/kg      |
| <0,1             | 19                                                                     | 0,34              | 101             | 30                  | 330         | 2,4                 | 400        |
| Kohlenwa         | sserstoffe                                                             | lipophile Stoffe  | тос             | Benzol              | Toluol      | Ethylbenzol         | Xylol      |
| GEW.%            |                                                                        | Gew.%             | Gew.%           | mg/kg               | mg/kg       | mg/kg               | mg/kg      |
| 0,77             |                                                                        | 2,1               | 9,6             | 5,9                 | 34          | 0,04                | 0,26       |
| Summe BTEX       | Naphthalin                                                             | Acenaphten        | Acenaphtylen    | Fluoren             | Phenanthren | Anthracen           | Fluoranthe |
| mg/kg            | mg/kg                                                                  | mg/kg             | mg/kg           | mg/kg               | mg/kg       | mg/kg               | mg/kg      |
| 40,2             | 0,5                                                                    | 0,6               | <0,1            | 0,4                 | 0,5         | <0,1                | 0,4        |
| Pyren            | Benz(a)a                                                               | nthracen          | Chrysen         | Benzo(b)fluoranthen |             | Benzo(k)fluoranthen |            |
| mg/kg            | mg                                                                     | /kg               | mg/kg           | mg/kg               |             | mg/kg               |            |
| 0,2              | 0,                                                                     | 1                 | 0,2             | 0,1                 |             | <0,1                |            |
| Dibenz(ah)       | anthracen                                                              | Benzo(gh          | i)pervlen       | Indeno(1.2          | ,3-cd)pyren | Benzo(a)pyren       | AOX        |
| mg               |                                                                        | mg/               | / -             | mg/kg               |             | mg/kg               | mg/kg      |
|                  |                                                                        | <0                |                 |                     | 0,1         | <0,1                | 820        |
| Wasserlösl       | icher Anteil                                                           | Summe PA          | K (16 EPA)      |                     |             |                     |            |
| Gew.%            |                                                                        | mg/               | /ka             |                     |             |                     |            |

# <u>Bemerkungen</u>

körnig-klumpig, braun-schwarz, Geruch nach Gummi



Abfälle aus HZVA und Entfernung von Farben und Lacken - wässrige Schlämme die Farben oder Lacke mit organischen Lösungsmitteln oder anderen gefährlichen Stoffen enthalten.

| lfd Nr. | EAV    | Datum      |  |  |
|---------|--------|------------|--|--|
| 19      | 080115 | 21.10.2002 |  |  |

# Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 53,9       | 4                     | 30,7                    | 67,8                    | ja        |
| 59,8       | 3                     | 32,8                    | 63,3                    | ja        |
|            |                       |                         |                         |           |
| Median     | 3,5                   | 31,8                    | 65,5                    | ja        |

Daphnientest - Eluat

| Bupilliontoot Eldat |                       |                         |                         |                         |           |  |  |
|---------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|--|--|
| 100%-Probe          | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |  |  |
| [%Hemmung]          |                       | [%]                     | [%]                     | [%]                     |           |  |  |
| 0                   | 1                     | -                       | -                       | -                       | nein      |  |  |
| 20                  | 2                     | -                       | -                       | -                       | ja        |  |  |
|                     |                       |                         |                         |                         |           |  |  |
| Median              | 1,5                   | -                       | -                       | -                       | ja        |  |  |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 50         | 8                     | 13,2                    | 50,4                    | ja        |
| 49,9       | 8                     | 14,6                    | 50,6                    | ja        |
|            |                       |                         |                         |           |
| Median     | 8                     | 13,9                    | 50,5                    | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 47,7       | 1                     | ja        |
| 63,2       | 2-10                  | ja        |
|            |                       |           |
| Median     | 2-10                  | ja        |

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |  |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|--|
| Brassica         | >32                     | 8                                   | 8                             | ja        |  |
|                  | >128                    | 16                                  | 16                            | ja        |  |
| Lycopersicon     | >32                     | 16                                  | 16                            | ja        |  |
|                  | 64                      | >128                                | 128                           | ja        |  |
| Avena            | >32                     | >32                                 | >32                           | ja        |  |
|                  | >128                    | 16                                  | 16                            | ja        |  |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 16        |  |

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                          |                            |                       | Datenblatt Pr           | obe Nr. 19            |                      |                    |                       |
|--------------------------|----------------------------|-----------------------|-------------------------|-----------------------|----------------------|--------------------|-----------------------|
| Ahfälle aus H7VA         | und Entfernung vor         | Farhen und Lac        | ken - wässrige S        | chlämme               | lfd Nr.              | EAV                | Datum                 |
|                          | acke mit organische        |                       |                         | omanino               | 19                   | 080115             | 21.10.2002            |
| gefährlichen Stoffe      |                            |                       | - Cuci unucion          |                       | 10                   | 000110             | 21.10.2002            |
|                          |                            | Chemis                | sche Charakt            | erisierung - El       | uat                  |                    |                       |
| Trockengewicht           | Wassergehalt %             | pН                    | LF μS/cm                |                       |                      |                    |                       |
| 59,8                     | 40,2                       | 9,7 eing. auf 7,2     | 875                     |                       |                      |                    |                       |
| DOC                      | TOC                        | NH4                   | Quecksilber             | Cadmium               | Chrom,               | Nickel             | Kupfer                |
| mg/l                     | mg/l                       | mg/L                  | μg/l                    | μg/l                  | μg/l                 | μg/l               | μg/l                  |
| 150                      | -                          | 0,06                  | -                       | <0,1                  | 1,6                  | 5,1                | 12,6                  |
| Blei                     | Zink                       | Mangan                | Arsen                   | Cobalt                | AOX                  | 1                  |                       |
| μg/l                     | μg/l                       | μg/l                  | μg/L                    | μg/l                  | mg/l                 |                    |                       |
| 10,3                     | 87                         | <5                    | <0,5                    | 1,8                   | 0,05                 |                    |                       |
| PCB 8                    | нсн                        | PCB 18                | PCB 28                  | PCB 52                | PCB 101              | PCB 138            | PCB 153               |
| μ <b>g/</b> l            | ua/l                       | µg/l                  | μ <b>q</b> /l           | ug/l                  | ua/l                 | ua/l               | µg/l                  |
| μg/i                     | γ9/1                       | <u>μ</u> g/.          | γς.                     | γς.                   | 0,009                | 0,013              | 0,008                 |
|                          | -                          |                       |                         | ·                     | 0,000                | 0,010              | 0,000                 |
| PCB 180                  | PCB 77                     | PCB 105               | PCB 118                 | PCB 126               | PCB 169              | PCB 189            |                       |
| μg/l                     | μg/l                       | μg/l                  | μg/l                    | μg/l                  | μg/l                 | μg/l               |                       |
| <                        | -                          | 0,001                 | <                       | -                     | -                    | -                  |                       |
| Naphthalin               | Acenaphthylen              | Acenaphten            | Fluoren                 | Phenanthren           | Anthracen            | Fluoranthen        | Pyren                 |
| µg/l                     | µg/l                       | µg/l                  | μq/l                    | µg/l                  | μg/l                 | μg/l               | µg/l                  |
| 5,908                    | 0.007                      | 0,011                 | 0.009                   | 0.016                 | <u>μ</u> σ/·         | 0.006              | 0.007                 |
| 0,000                    | 0,007                      | 0,011                 | 0,000                   | 0,0.0                 |                      | 0,000              | 0,00.                 |
| Benzo(a)-                | Chrysen                    | Benzo(b)-             | Benzo(k)-               | Benzo(a)-pyren        | Indeno(1,2,3-        | Dibenz(a,h)-       | Benzo(g,h,i)          |
| anthracen                |                            | fluoranthen           | fluoranthen             |                       | cd)-pyren            | anthracen          | perylen               |
| μg/l                     | μg/l                       | μg/l                  | μg/l                    | μg/l                  | μg/l                 | μg/l               | μg/l                  |
| 0,001                    | 0,001                      | <                     | <                       | <                     | <                    | <                  | <                     |
| Biphenyl                 | Benzol                     | Toluol                | Ethylbenzol             | m-/p-Xylol            | o-Xylol              | Dichlor-           | 1,1-                  |
|                          |                            |                       |                         |                       | -                    | methan             | Dichlorethe           |
| μg/l                     | μg/l                       | µg/l                  | μg/l                    | µg/l                  | μg/l                 | μg/l               | μg/l                  |
| 0,021                    | <                          | 0,7                   | 18                      | 79                    | 49                   | <                  | <                     |
| cis-1,2-<br>Dichlorethen | trans-1,2-<br>Dichlorethen | Trichlor-<br>methan   | 1,1,1-<br>Trichlorethan | Tetrachlor-<br>methan | 1,2-<br>Dichlorethan | Trichlorethen      | Bromdichlor<br>methan |
| µg/l                     | µg/l                       | <u>methan</u><br>μg/l | µg/l                    | methan<br>µg/l        | µg/l                 | μg/l               | <u>methan</u><br>μg/l |
| μ <u>g</u> /ι<br><       | μg/i<br><                  | μ <u>υ</u> /ι<br><    | μg/i<br><               | μg/i<br><             | μ <u>g</u> /ι<br><   | μ <u>g</u> /ι<br>< | μ <u>g</u> /ι<br><    |
| •                        |                            |                       |                         |                       | `                    | `                  |                       |
| 442                      | Totachisustha              | Dibronsalala          | Triberra                | 4.0                   | 4.2                  | 4.4                | VM India-             |
| 1,1,2-                   | Tetrachlorethen            | Dibromchlor-          | Tribrom-                | 1,2-                  | 1,3-                 | 1,4-               | KW-Index              |
| Trichlorethan            | 110/1                      | methan                | methan                  | Dichlorbenzol         | <u>Dichlorbenzol</u> | Dichlorbenzol      | (H53)                 |
| μg/l<br><                | μg/l<br><                  | μg/l<br><             | μg/l<br><               | μg/l<br><             | μg/l<br><            | μg/l<br><          | mg/l                  |
|                          |                            |                       | `                       | `                     | `                    |                    | -                     |

Abfälle aus HZVA und Entfernung von Farben und Lacken - wässrige Schlämme die Farben oder Lacke mit organischen Lösungsmitteln oder anderen gefährlichen Stoffen enthalten.

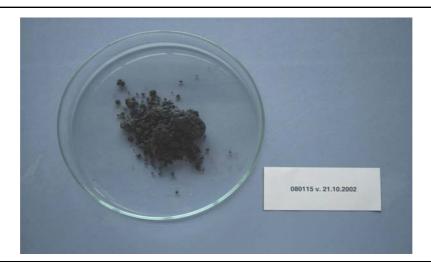
| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 19      | 080115 | 21.10.2002 |

### **Chemische Charakterisierung - Feststoff**

| Arsen    | Blei       | Cadmium          | Chrom | Kupfer | Nickel | Quecksilber | Zink  |
|----------|------------|------------------|-------|--------|--------|-------------|-------|
| mg/kg    | mg/kg      | mg/kg            | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 1        | 195        | 0,14             | 11    | 24     | 5,1    | <0,05       | 5330  |
|          |            |                  |       |        |        |             |       |
| Kohlonwa | ccorctoffo | linanhila Ctaffa | TOC   | Banzal | Talual | Ethylbonzol | Vylal |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,78               | 0,61             | 31,8  | 0,07   | 0,3    | 43          | 240   |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 283        | 90         | <0,1       | <0,1         | <0,1    | 0,18        | 0,12      | <0,1        |


| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| <0,1  | <0,1             | <0,1    | <0,1                | <0,1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0,1                | <0,1              | <0,1                  | <0,1          | 210   |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| 0,6                    | 90,3               |

## Bemerkungen

körnig, schwarz, Geruch nach Lösungsmittel



Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenverarbeitung von Metallen und Kunststoffen - Strahlmittelabfälle, die gefährliche Stofffe enthalten.

| lfd Nr. | Ifd Nr. EAV   |            |
|---------|---------------|------------|
| 21      | 120116/120117 | 16.10.2002 |

## Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 10                    | 10,1                    | 12,2                    | ja        |
| 100        | >10                   | -                       | -                       | ja        |
| 100        | 20                    | 6,0                     | 24,6                    | ja        |
| Median     | 15                    | 8,0                     | 18,4                    | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 50         | 2                     | -                       | -                       | •                       | ja        |
| 10         | 1                     | -                       | -                       | •                       | nein      |
|            |                       |                         |                         |                         |           |
| Median     | 1,5                   | -                       | -                       | -                       | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 69,4       | 16                    | 8,0                     | 25,4                    | ja        |
| 68,6       | 16                    | 9,8                     | 27,4                    | ja        |
|            |                       |                         |                         |           |
| Median     | 16                    | 8,9                     | 26,4                    | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 82,7       | >100                  | ja        |
|            |                       |           |
|            |                       |           |
| Median     | >100                  | ja        |

Pflanzentest - Gesamtprobe

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | 32                      | <8                                  | <8                            | ja        |
|                  | >32                     | 16                                  | 4                             | ja        |
| Lycopersicon     | 16                      | <8                                  | <8                            | ja        |
|                  | >32                     | 16                                  | 16                            | ja        |
| Avena            | -                       | <8                                  | <8                            | ja        |
|                  | 2                       | 4                                   | 4                             | ja        |
| repräsentativste | r G <sub>P</sub> -Wert  |                                     |                               | 8         |

umu-Test - Eluat ohne S9 Eluat mit S9

| GEU      | VD       | Gentoxizität                      |                                                        | GEU                                                    | VD                                                                 | Gentoxizität                                                                  |
|----------|----------|-----------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|
| IR < 1,5 | IR < 1,5 | GEU > 1,5                         |                                                        | IR < 1,5                                               | IR < 1,5                                                           | GEU > 1,5                                                                     |
| 1,5      | 0,67     | nein                              |                                                        | 1,5                                                    | 0,67                                                               | nein                                                                          |
| 1,5      | 0,67     | nein                              |                                                        | 1,5                                                    | 0,67                                                               | nein                                                                          |
|          |          |                                   |                                                        |                                                        |                                                                    |                                                                               |
| 1,5      | 0,67     | nein                              | Median                                                 | 1,5                                                    | 0,67                                                               | nein                                                                          |
|          | GEU      | GEU         VD           IR < 1,5 | GEU         VD         Gentoxizität           IR < 1,5 | GEU         VD         Gentoxizität           IR < 1,5 | GEU         VD         Gentoxizität         GEU           IR < 1,5 | GEU         VD         Gentoxizität         GEU         VD           IR < 1,5 |

|                    |                       |                     | Datenblatt          | Probe Nr. 21       |                       |                   |                        |
|--------------------|-----------------------|---------------------|---------------------|--------------------|-----------------------|-------------------|------------------------|
| Abfälle aus Prozes | ssen der mechanisc    | hen Formgebung      | g sowie der phys    | ikalischen         | Ifd Nr.               | EAV               | Datum                  |
|                    | n Oberflächenverart   | •                   |                     |                    | 21                    | 120116/120117     | 16.10.2002             |
|                    | efährliche Stofffe er |                     |                     |                    |                       |                   | •                      |
|                    |                       | Chen                | nische Chara        | kterisierung - Elu | at                    |                   |                        |
| Trockengewicht     | Wassergehalt %        | рН                  | LF μS/cm            |                    |                       |                   |                        |
| 100                | 0                     | 9,2 eing. auf 7,1   | 221                 |                    |                       |                   |                        |
| DOC                | TOC                   | NH4                 | Quecksilber         | Cadmim             | Chrom,                | Nickel            | Kupfer                 |
|                    |                       |                     |                     |                    |                       |                   |                        |
| mg/l<br>26         | mg/l<br>-             | mg/L<br>0.49        | μg/l<br>0.1         | μg/l<br>0.9        | μg/l<br>71.2          | μg/l<br>44.7      | μg/l<br>140            |
| 20                 | -                     | 0,49                | 0,1                 | 0,9                | 11,2                  | 44,7              | 140                    |
| Blei               | Zink                  | Mangan              | Arsen               | Cobalt             | AOX                   | l                 |                        |
| μg/l               | μg/l                  | μg/l                | μg/L                | μg/l               | mg/l                  | 1                 |                        |
| 16,4               | 86                    | 6                   | <0,5                | 1,8                | 0,07                  |                   |                        |
| PCB 8              | нсн                   | PCB 18              | PCB 28              | PCB 52             | PCB 101               | PCB 138           | PCB 153                |
| µg/l               | μg/l                  | µg/l                | μg/l                | μg/l               | μg/l                  | μg/l              | μg/l                   |
| μ <b>y</b> /1      | μg/i<br><             | μg/i<br><           | μg/i<br><           | μg/i<br><          | μ <u>μ</u> η<br>0,011 | 0.029             | 0.014                  |
|                    |                       | `                   | `                   |                    | 0,011                 | 0,029             | 0,014                  |
| PCB 180            | PCB 77                | PCB 105             | PCB 118             | PCB 126            | PCB 169               | PCB 189           |                        |
| μg/l               | μg/l                  | μg/l                | μg/l                | μg/l               | μg/l                  | μg/l              |                        |
| 0,004              | <                     | 0,002               | <                   | <                  | <                     | <                 |                        |
|                    |                       |                     |                     | 1                  |                       |                   |                        |
| Naphthalin         | Acenaphthylen         | Acenaphten          | Fluoren             | Phenanthren        | Anthracen             | Fluoranthen       | Pyren                  |
| μg/l               | μg/l                  | μg/l                | μg/l                | μg/l               | μg/l                  | μg/l              | μg/l                   |
| 0,307              | 0,014                 | 0,017               | 0,02                | 0,071              | <                     | 0,025             | 0,027                  |
| Danna (a)          | Oh man and            | Dana a (h)          | Danne (Is)          | Damma(a) mumam     | Indona/4.0.0          | Dibana(a b)       | Danza(n.h.i)           |
| Benzo(a)-          | Chrysen               | Benzo(b)-           | Benzo(k)-           | Benzo(a)-pyren     | Indeno(1,2,3-         | Dibenz(a,h)-      | Benzo(g,h,i)           |
| anthracen<br>µg/l  | µg/l                  | fluoranthen<br>µg/l | fluoranthen<br>µg/l | µg/l               | cd)-pyren<br>µg/l     | anthracen<br>µg/l | <b>perylen</b><br>μg/l |
| μ <u>g</u> /1      | 0,007                 | 0,003               | μg/i<br><           | 0,002              | μg/i<br>0,001         | μ <u>γ</u> γη <   | 0,002                  |
| `                  | 0,007                 | 0,000               | `                   | 0,002              | 0,001                 | `                 | 0,002                  |
| Biphenyl           | Benzol                | Toluol              | Ethylbenzol         | m-/p-Xylol         | o-Xylol               | Dichlormethan     | 1,1-                   |
| Diplicity          | Belizei               | 101401              | Linyiberizor        | III-7p-xyloi       | O-Ayloi               | Dicinormethan     | Dichlorether           |
| µg/l               | μg/l                  | μg/l                | μg/l                | μg/l               | μg/l                  | μg/l              | μg/l                   |
| 0,005              | 0.2                   | 0,27                | 0,35                | 2,56               | 1,48                  | μg/1              | μg/1                   |
| 5,555              | ٠,١ـ                  | ~, <u>~</u> ,       | 5,00                | _,50               | ., 10                 |                   |                        |
| cis-1,2-           | trans-1,2-            | Trichlor-           | 1,1,1-              | Tetrachlor-methan  | 1,2-                  | Trichlorethen     | Bromdichlor            |
| Dichlorethen       | Dichlorethen          | methan              | Trichlorethan       |                    | Dichlorethan          |                   | methan                 |
| μg/l               | μg/l                  | μg/l                | μg/l                | μg/l               | μg/l                  | μg/l              | μg/l                   |
| <                  | <                     | <                   | <                   | <                  | <                     | <                 | <                      |
|                    |                       |                     |                     |                    |                       |                   |                        |
| 1,1,2-             | Tetrachlorethen       | Dibromchlor-        | Tribrom-            | 1,2-Dichlorbenzol  | 1,3-                  | 1,4-              | KW-Index               |
| Trichlorethan      |                       | methan              | methan              |                    | Dichlorbenzol         | Dichlorbenzol     | (H53)                  |
| μg/l               | μg/l                  | μg/l                | μg/l                | μg/l               | μg/l                  | μg/l              | mg/l                   |
| <                  | <                     | <                   | <                   | <                  | <                     | <                 | -                      |

© LfU Anhang 101

# Datenblatt Probe Nr. 21

Abfälle aus Prozessen der mechanischen Formgebung sowie der physikalischen und mechanischen Oberflächenverarbeitung von Metallen und Kunststoffen - Strahlmittelabfälle, die gefährliche Stofffe enthalten.

| lfd Nr. | EAV           | Datum      |  |
|---------|---------------|------------|--|
| 21      | 120116/120117 | 16.10.2002 |  |

# Chemische Charakterisierung - Feststoff

| Arsen | Blei  | Cadmium | Chrom | Kupfer | Nickel | Quecksilber | Zink  |
|-------|-------|---------|-------|--------|--------|-------------|-------|
| mg/kg | mg/kg | mg/kg   | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 6,9   | 120   | 0,49    | 7300  | 460    | 3650   | 3,7         | 1330  |
|       |       |         |       |        |        |             |       |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,024              | 0,04             | 8,0   | <0,01  | 0,01   | 0,03        | 0,22  |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| 0,26       | <0,1       | <0,1       | <0,1         | <0,1    | 0,13        | <0,1      | 0,11        |

| Pyren | Benz(a)anthracen | Chrysen | Benzo(b)fluoranthen | Benzo(k)fluoranthen |
|-------|------------------|---------|---------------------|---------------------|
| mg/kg | mg/kg            | mg/kg   | mg/kg               | mg/kg               |
| 0.13  | <0,1             | <0.1    | <0.1                | <0.1                |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0,1                | <0,1              | <0,1                  | <0,1          | 10    |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| 0,8                    | <1                 |

## Bemerkungen

pulvrig, schwarz-grau



| Datenblatt Probe Nr. 22                                                    |         |        |            |
|----------------------------------------------------------------------------|---------|--------|------------|
| Abfälle aus der Verbrennung oder Pyrolyse von Abfällen - Rost- und Kessel- | lfd Nr. | EAV    | Datum      |
| aschen sowie Schlacken mit Ausnahme derjenigen, die unter 190111 fallen.   | 22      | 190112 | 17.10.2002 |

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 6                     | 25,0                    | -                       | ja        |
| 66,8       | 3                     | 45,9                    | 59,5                    | ja        |
|            |                       |                         |                         |           |
| Median     | 4,5                   | 35,4                    | 59,5                    | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 70         | 2                     | -                       | -                       | -                       | ja        |
| 100        | 2                     | -                       | -                       | -                       | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 2                     | -                       | -                       | -                       | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 22,2       | 4                     | 41,4                    | 138,6                   | ja        |
| 20,5       | 4                     | 48,2                    | 122,4                   | ja        |
|            |                       |                         |                         |           |
| Median     | 4                     | 44,8                    | 130,5                   | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 106,4      | 1                     | ja        |
| 92,4       | 10-100                | ja        |
| 105,0      | 10-100                | ja        |
| Median     | 10-100                | ja        |

|                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | 8                       | 4                                   | 4                             | ja        |
|                  | >32                     | 2                                   | 2                             | ja        |
| Lycopersicon     | 4                       | 4                                   | 8                             | ja        |
|                  | >32                     | 8                                   | 8                             | ja        |
| Avena            | 2                       | 4                                   | 4                             | ja        |
|                  | 32                      | 8                                   | 8                             | ja        |
| repräsentativste | er G <sub>P</sub> -Wert |                                     |                               | 8         |

| umu-Test - Eluat ohne S9 |          |          | Eluat mit S9 |        |          |          |              |
|--------------------------|----------|----------|--------------|--------|----------|----------|--------------|
|                          | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|                          | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|                          | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|                          | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|                          |          |          |              |        |          |          |              |
| Median                   | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                    |                 |                   | Datenblatt F      | Probe Nr. 22    |               |                  |                      |
|--------------------|-----------------|-------------------|-------------------|-----------------|---------------|------------------|----------------------|
| Abfälle aus der Ve | erbrennung oder | Pyrolyse von Abfä | illen - Rost- und | Kessel-         | lfd Nr.       | EAV              | Datum                |
| aschen sowie Sch   | •               |                   |                   |                 | 22            | 190112           | 17.10.2002           |
|                    |                 | , ,               |                   | terisierung - E | luat          | ,                |                      |
| Trockengewicht     | Wassergehalt    | ¶ pH              | LF µS/cm          | ]               |               |                  |                      |
| 60,4               | 39,6            | 12,5 eing. auf 7  | 8220              | ]               |               |                  |                      |
| DOC                | ТОС             | NH4               | Quecksilber       | Cadmium         | Chrom,        | Nickel           | Kupfer               |
| mg/l               | mg/l            | mg/L              | μg/l              | μg/l            | µq/l          | μg/l             | μg/l                 |
| 13                 | -               | 1,3               | 0,1               | 0,2             | 7,4           | <0,5             | 112                  |
| Blei               | Zink            | Mangan            | Arsen             | Cobalt          | AOX           | 1                |                      |
| µg/l               | µg/l            | μg/l              | µg/L              | µg/l            | mg/l          |                  |                      |
| 562                | 740             | μg/i<br><5        | 49/L<br><0,5      | 1,4             | 0,02          | 1                |                      |
|                    | -               |                   |                   | ,               | ,             |                  |                      |
| PCB 8              | HCH             | PCB 18            | PCB 28            | PCB 52          | PCB 101       | PCB 138          | PCB 153              |
| μg/l               | μg/l            | μg/l              | μg/l              | μg/l            | μg/l          | μg/l             | μg/l                 |
| <                  | <               | <                 | <                 | <               | 0,011         | <                | 0,008                |
| PCB 180            | PCB 77          | PCB 105           | PCB 118           | PCB 126         | PCB 169       | PCB 189          | 1                    |
| μg/l               | μg/l            | μg/l              | μg/l              | μg/l            | μg/l          | μg/l             |                      |
| <u>μ</u> g/·<br><  | γς,             | <                 | γg/·<br><         | γς,             | γ9/1          | <                |                      |
|                    |                 |                   | T                 |                 |               |                  | _                    |
| Naphthalin         | Acenaphthyler   |                   | Fluoren           | Phenanthren     | Anthracen     | Fluoranthen      | Pyren                |
| µg/l               | μg/l            | μg/l              | μg/l              | μg/l            | μg/l          | μg/l             | µg/l                 |
| 0,031              | 0,003           | 0,002             | 0,004             | 0,011           | <             | 0,005            | 0,005                |
| Benzo(a)-          | Chrysen         | Benzo(b)-         | Benzo(k)-         | Benzo(a)-pyren  | Indeno(1,2,3- | Dibenz(a,h)-     | Benzo(g,h,i)-        |
| anthracen          |                 | fluoranthen       | fluoranthen       |                 | cd)-pyren     | anthracen        | perylen              |
| μg/l               | μg/l            | μg/l              | μg/l              | μg/l            | μg/l          | μg/l             | μg/l                 |
| 0                  | 0,001           | 0                 | <                 | 0,002           | <             | <                | <                    |
| Biphenyl           | Benzol          | Toluol            | Ethylbenzol       | m-/p-Xylol      | o-Xylol       | Dichlormethan    | 1,1-<br>Dichlorethen |
| μg/l               | μg/l            | μg/l              | μg/l              | μg/l            | μg/l          | μg/l             | μg/l                 |
| 0,004              | 0,4             | 0,22              | <                 | <               | <             | <                | <                    |
| cis-1.2-           | trans-1.2-      | Trichlor-         | 1,1,1-            | Tetrachlor-     | 1.2-          | Trichlorethen    | Bromdichlor          |
| Dichlorethen       | Dichlorethen    | methan            | Trichlorethan     | methan          | Dichlorethan  | 111CIIIOTELIIEII | methan               |
| µg/l               | µg/l            | μg/l              | µg/l              | µg/l            | µg/l          | μg/l             | µg/l                 |
| <                  | <               | <                 | <                 | <               | <             | <                | γg/·<br><            |
| 440                | Takus - l-1     | Dibuorista        | Tulb              | 4.0             | 4.0           |                  | IZM In ala           |
| 1,1,2-             | Tetrachlor-     | Dibromchlor-      | Tribrom-          | 1,2-            | 1,3-          | 1,4-             | KW-Index             |
| Trichlorethan      | ethen           | methan            | methan            | Dichlorbenzol   |               | Dichlorbenzol    | (H53)                |
| μg/l<br><          | μg/l<br><       | μg/l<br><         | μg/l<br><         | μg/l<br><       | μg/l<br><     | μg/l<br><        | mg/l                 |
|                    | `               |                   | `                 | `               | `             |                  |                      |

|                  |                |                   | Datenblatt Pr       | ODE NI. 22          |               |                     |              |
|------------------|----------------|-------------------|---------------------|---------------------|---------------|---------------------|--------------|
| fälle aus der Ve | rbrennung oder | Pyrolyse von Abfa | ällen - Rost- und k | Kessel-             | lfd Nr.       | EAV                 | Datum        |
| chen sowie Schl  | acken mit Ausn | ahme derjenigen,  | die unter 190111    | fallen.             | 22            | 190112              | 17.10.200    |
|                  |                | Chemis            | che Charakter       | isierung - F        | eststoff      |                     |              |
| Arsen            | Blei           | Cadmium           | Chrom               | Kupfer              | Nickel        | Quecksilber         | Zink         |
| mg/kg            | mg/kg          | mg/kg             | mg/kg               | mg/kg               | mg/kg         | mg/kg               | mg/kg        |
| 7,4              | 210            | 4,7               | 96                  | 1020                | 49            | 4,5                 | 1900         |
| Kohlenwas        | serstoffe      | lipophile Stoffe  | TOC                 | Benzol              | Toluol        | Ethylbenzol         | Xylol        |
| GEW              | .%             | Gew.%             | Gew.%               | mg/kg               | mg/kg         | mg/kg               | mg/kg        |
| 0,00             | 12             | <0,01             | 1                   | 0,01                | 0,01          | 0,08                | 0,49         |
| Summe BTEX       | Naphthalin     | Acenaphten        | Acenaphtylen        | Fluoren             | Phenanthren   | Anthracen           | Fluoranther  |
| mg/kg            | mg/kg          | mg/kg             | mg/kg               | mg/kg               | mg/kg         | mg/kg               | mg/kg        |
| 0,59             | <0,1           | <0,1              | <0,1                | <0,1                | <0,1          | <0,1                | <0,1         |
|                  |                |                   |                     |                     |               |                     |              |
| Pyren            | . ,            | anthracen         | Chrysen             | Benzo(b)fluoranthen |               | Benzo(k)fluoranthen |              |
| mg/kg            |                | g/kg              | mg/kg               |                     | ng/kg         | mg                  |              |
| <0,1             | <              | <0,1              | <0,1                |                     | <0,1          | <0                  | ),1          |
| Dibenz(ah)a      | inthracen      | Benzo(gh          | i)perylen           | Indeno(1            | ,2,3-cd)pyren | Benzo(a)pyren       | AOX          |
| mg/l             | (g             | mg/               | /kg                 | n                   | ng/kg<br><0.1 | mg/kg<br><0.1       | mg/kg<br>120 |
| <0,              | 1              | <0                | ,1                  |                     | <0,1          | <0,1                | 120          |
| Wasserlöslic     | her Anteil     | Summe PA          | K (16 EPA)          |                     |               |                     |              |
| Gew.%            |                | mg/               | /ka                 |                     |               |                     |              |

# <u>Bemerkungen</u>

Schlacke, grau-schwarz, fest, grobkörnig, feucht



| Datenblatt Probe Nr. 23                                                    |         |        |            |
|----------------------------------------------------------------------------|---------|--------|------------|
| Abfälle aus der Verbrennung oder Pyrolyse von Abfällen - feste Abfälle aus | lfd Nr. | EAV    | Datum      |
| der Abgasbehandlung.                                                       | 23      | 190107 | 17.10.2002 |

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | >10                   | -                       | -                       | ja        |
| 100        | 20                    | 8,6                     | 10,0                    | ja        |
| 100        | 10                    | 11,2                    | 12,2                    | ja        |
| Median     | 15                    | 9,9                     | 11,1                    | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 100                   | -                       | -                       | -                       | ja        |
| 100        | 50                    | 2,8                     | 3,1                     | 3,8                     | ja        |
| 100        | 40                    | 3,9                     | 4,2                     | 4,9                     | ja        |
| Median     | 50                    | 3,3                     | 3,7                     | 4,4                     | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 18,2       | 2                     | -                       | -                       | nein      |
| 19,4       | 2                     | -                       | -                       | nein      |
|            |                       |                         |                         |           |
| Median     | 2                     | -                       | -                       | nein      |

Bakterienkontakttest - Eluat

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 92,5       | -                     | ja        |
| 99,5       | >100                  | ja        |
|            |                       |           |
| Median     | >100                  | ja        |

Pflanzentest - Gesamtprobe

| i nanzentest - Gesamtprobe |                         |                                     |                               |           |  |  |  |
|----------------------------|-------------------------|-------------------------------------|-------------------------------|-----------|--|--|--|
| 50%-Probe                  | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |  |  |  |
| Brassica                   | >128                    | >128                                | >128                          | ja        |  |  |  |
|                            | >4096                   | 2048                                | 2048                          | ja        |  |  |  |
| Lycopersicon               | >128                    | >128                                | >128                          | ja        |  |  |  |
|                            | 1024                    | 2048                                | 2048                          | ja        |  |  |  |
| Avena                      | >128                    | >128                                | >128                          | ja        |  |  |  |
|                            | <256                    | 1024                                | >4096                         | ja        |  |  |  |
| repräsentativste           | er G <sub>P</sub> -Wert |                                     |                               | 2048      |  |  |  |

umu-Test - Eluat ohne S9 Eluat mit S9

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                         |                     |                        | Datenblatt P       | robo Nr. 22           |                       |                       |                   |
|-------------------------|---------------------|------------------------|--------------------|-----------------------|-----------------------|-----------------------|-------------------|
| Abfälle ove der Vo      | rhrannung adar Dur  | alvoo von Ahfällo      |                    |                       | Ifal Na               | EAV                   | Detum             |
|                         | erbrennung oder Pyr | olyse von Abfalle      | n - teste Abfalle  | aus                   | Ifd Nr.               |                       | Datum             |
| der Abgasbehandl        | ung.                |                        |                    |                       | 23                    | 190107                | 17.10.2002        |
|                         |                     | Chemi                  | sche Charakt       | terisierung - El      | uat                   |                       |                   |
| Trockengewicht          | Wassergehalt %      | рН                     | LF μS/cm           | 1                     |                       |                       |                   |
| 100                     | 0                   | 8,04                   | 97700              | ]                     |                       |                       |                   |
| DOC                     | тос                 | NH4                    | Quecksilber        | Cadmium               | Chrom,                | Nickel                | Kupfer            |
| mg/l                    | mg/l                | mg/L                   | μg/l               | μg/l                  | μg/l                  | μg/l                  | μg/l              |
| 24                      | -                   | 0,76                   | 6,6                | 3010                  | 20,9                  | 20,2                  | 33,9              |
| Blei                    | Zink                | Mangan                 | Arsen              | Cobalt                | AOX                   |                       |                   |
| μg/l                    | μg/l                | μg/l                   | μg/L               | μg/l                  | mg/l                  |                       |                   |
| 1070                    | 284                 | 2480                   | 395                | 17,8                  | 0,25                  |                       |                   |
|                         |                     |                        | •                  |                       |                       | •                     |                   |
| PCB 8                   | HCH                 | PCB 18                 | PCB 28             | PCB 52                | PCB 101               | PCB 138               | PCB 153           |
| μg/l                    | μg/l                | μg/l                   | μg/l               | μg/l                  | μg/l                  | μg/l                  | μg/l              |
| <                       | 0,001               | <b>«</b>               | <                  | <                     | 0,008                 | 0,011                 | 0,006             |
|                         |                     |                        |                    |                       |                       |                       | •                 |
| PCB 180                 | PCB 77              | PCB 105                | PCB 118            | PCB 126               | PCB 169               | PCB 189               |                   |
| μg/l                    | μg/l                | μg/l                   | μg/l               | μg/l                  | μg/l                  | μg/l                  |                   |
| <                       | <                   | <                      | <                  | <                     | <                     | <                     |                   |
| Naphthalin              | Acenaphthylen       | Acenaphten             | Fluoren            | Phenanthren           | Anthracen             | Fluoranthen           | Pyren             |
| μg/l                    | μg/l                | μg/l                   | μg/l               | μg/l                  | μg/l                  | μg/l                  | μg/l              |
| 0,028                   | 0,001               | 0,002                  | 0,002              | 0,006                 | 0                     | 0,003                 | 0,004             |
| Benzo(a)-               | Chrysen             | Benzo(b)-              | Benzo(k)-          | Benzo(a)-pyren        | Indeno(1,2,3-         | Dibenz(a,h)-          | Benzo(g,h,i)      |
| anthracen               | -                   | fluoranthen            | fluoranthen        |                       | cd)-pyren             | anthracen             | perylen           |
| μg/l                    | μg/l                | μg/l                   | μg/l               | μg/l                  | μg/l                  | μg/l                  | μg/l              |
| 0                       | 0                   | 0                      | <                  | 0,001                 | <                     | <                     | <                 |
| Biphenyl                | Benzol              | Toluol                 | Ethylbenzol        | m-/p-Xylol            | o-Xylol               | Dichlormethan         | 1,1-              |
| . ,                     |                     |                        |                    | . ,                   | ,                     |                       | Dichlorethe       |
| μg/l                    | μg/l                | μg/l                   | μg/l               | μg/l                  | μg/l                  | μg/l                  | μg/l              |
| 0,001                   | <                   | 0,3                    | 0,3                | 1,91                  | 0,97                  | <                     | <                 |
|                         |                     |                        | •                  |                       |                       | •                     | •                 |
| cis-1,2-                | trans-1,2-          | Trichlor-              | 1,1,1-             | Tetrachlor-           | 1,2-                  | Trichlorethen         | Bromdichlor       |
| Dichlorethen            | Dichlorethen        | methan                 | Trichlorethan      | methan                | Dichlorethan          |                       | methan            |
| μg/l                    | μg/l                | μg/l                   | μg/l               | μg/l                  | μg/l                  | μg/l                  | μg/l              |
| <                       | <                   | 0,11                   | <                  | <                     | <                     | <                     | <                 |
| 445                     | T-4                 | D.0                    | T. 11.             | 1 4 5                 | 4.5                   | 4.                    | 10141             |
| 1,1,2-<br>Trichlorethan | Tetrachlorethen     | Dibromchlor-<br>methan | Tribrom-<br>methan | 1,2-<br>Dichlorbenzol | 1,3-<br>Dichlorbenzol | 1,4-<br>Dichlorbenzol | KW-Index<br>(H53) |
| μg/l                    | μg/l                | μg/l                   | μg/l               | μg/l                  | μg/l                  | μg/l                  | mg/l              |
| <                       | <                   | . <                    | <                  | <                     | . <                   | <                     | -                 |

| älle aus der Ve | rbrennung oder Py | rolyse von Abfälle | n - feste Abfälle a | us                  | Ifd Nr.      | EAV                 | Datum      |
|-----------------|-------------------|--------------------|---------------------|---------------------|--------------|---------------------|------------|
| Abgasbehandl    | ung.              | •                  |                     |                     | 23           | 190107              | 17.10.2002 |
|                 |                   | Chemiso            | he Charakteri       | sierung - Fe        | ststoff      |                     |            |
| Arsen           | Blei              | Cadmium            | Chrom               | Kupfer              | Nickel       | Quecksilber         | Zink       |
| mg/kg           | mg/kg             | mg/kg              | mg/kg               | mg/kg               | mg/kg        | mg/kg               | mg/kg      |
| 3               | 570               | 37                 | 24                  | 79                  | 13           | 50                  | 1240       |
| Kohlenwa        | sserstoffe        | lipophile Stoffe   | TOC                 | Benzol              | Toluol       | Ethylbenzol         | Xylol      |
| GE'             | W.%               | Gew.%              | Gew.%               | mg/kg               | mg/kg        | mg/kg               | mg/kg      |
| <0,             | 002               | <0,01              | 1,1                 | <0,01               | 0,02         | 0,16                | 0,8        |
| umme BTEX       | Naphthalin        | Acenaphten         | Acenaphtylen        | Fluoren             | Phenanthren  | Anthracen           | Fluoranthe |
| mg/kg           | mg/kg             | mg/kg              | mg/kg               | mg/kg               | mg/kg        | mg/kg               | mg/kg      |
| 0,98            | 0,14              | <0,1               | <0,1                | <0,1                | <0,1         | <0,1                | <0,1       |
| Pyren           | Benz(a)a          | nthracen           | Chrysen             | Benzo(b)fluoranthen |              | Benzo(k)fluoranthen |            |
| mg/kg           | mg                |                    | mg/kg               |                     | g/kg         | mg/kg               |            |
| <0,1            | <0                |                    | <0,1                |                     | :0,1         | <0,1                |            |
| Dibenz(ah       | )anthracen        | Benzo(gh           | i)perylen           | Indeno(1,           | 2,3-cd)pyren | Benzo(a)pyren       | AOX        |
| mo              | /<br>g/kg         |                    | <i>,</i> ,          |                     |              | mg/kg               | mg/kg      |
| mg/kg<br><0,1   |                   | mg/<br><0          | ,1                  | <                   | g/kg<br>:0,1 | <0,1                | 55         |

### <u>Bemerkungen</u>

Rauchgasentschwefelung, Rauchgasrückstand, hygroskopisch; für LB-Test nicht aufgesalzen; Wärmeentwicklung bei Zugabe von dest. Wasser für die Eluatherstellung, pH 10-11; nach dem Abfiltrieren pH 8



| Datenblatt Probe Nr. 24                                |         |        |            |
|--------------------------------------------------------|---------|--------|------------|
| Abfälle aus der Verbrennung oder Pyrolyse von Abfällen | lfd Nr. | EAV    | Datum      |
|                                                        | 24      | 190113 | 17.10.2002 |

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | >10                   | -                       | -                       | ja        |
| 100        | 20                    | 9,1                     | 17,8                    | ja        |
| 100        | 80                    | 2,4                     | 5,8                     | ja        |
| Median     | 50                    | 5,7                     | 11,8                    | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 5                     | -                       | -                       | -                       | ja        |
| 100        | 5                     | 27                      | 28,5                    | 31,6                    | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 5                     | 27                      | 28,5                    | 31,6                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 33,8       | 8                     | 24,8                    | 95,0                    | ja        |
| 25,4       | 4                     | 38,8                    | 38,8 100,4              |           |
|            |                       |                         |                         |           |
| Median     | 6                     | 31,8                    | 97,7                    | ja        |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 99,4       | 1                     | ja        |
| 106,5      | >100                  | ja        |
|            |                       |           |
| Median     | >100                  | ja        |

| 50%-Probe                              | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|----------------------------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica                               | 128                     | 64                                  | 64                            | ja        |
|                                        | <128                    | 256                                 | 512                           | ja        |
| Lycopersicon                           | >128                    | 128                                 | 128                           | ja        |
|                                        | 256                     | 512                                 | 512                           | ja        |
| Avena                                  | >128                    | 128                                 | 128                           | ja        |
|                                        | <128                    | 256                                 | 512                           | ja        |
| repräsentativster G <sub>P</sub> -Wert |                         |                                     |                               | 128       |

| umu-Test - Elu | uat ohne S9 |          |              | Eluat mit S9 |          |          |              |
|----------------|-------------|----------|--------------|--------------|----------|----------|--------------|
|                | GEU         | VD       | Gentoxizität |              | GEU      | VD       | Gentoxizität |
|                | IR < 1,5    | IR < 1,5 | GEU > 1,5    |              | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|                | 1,5         | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                | 1,5         | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                |             |          |              |              |          |          |              |
| Median         | 1.5         | 0.67     | nein         | Median       | 1.5      | 0.67     | nein         |

|                        |                    | 1                                     | Datenblatt Pr            | obe Nr. 24       |                   |                   |                      |
|------------------------|--------------------|---------------------------------------|--------------------------|------------------|-------------------|-------------------|----------------------|
| Abfälle aus der Ve     | erbrennung oder Pv | rolyse von Abfällen                   |                          |                  | lfd Nr.           | EAV               | Datum                |
|                        | g,                 | ,                                     |                          |                  | 24                | 190113            | 17.10.2002           |
|                        |                    |                                       |                          | erisierung - Eli | uat               |                   |                      |
|                        | Wassergehalt %     | pН                                    | LF μS/cm                 |                  |                   |                   |                      |
| 100                    | 0                  | 11,8 eing. auf 7,4                    | 37500                    |                  |                   |                   |                      |
| DOC                    | TOC                | NH4                                   | Quecksilber              | Cadmium          | Chrom,            | Nickel            | Kupfer               |
| mg/l                   | mg/l               | mg/L                                  | μg/l                     | µg/l             | µq/l              | μg/l              | μq/l                 |
| 4                      | -                  | 0,08                                  | 1                        | 2,1              | 234               | 152               | 45,5                 |
| Blei                   | Zink               | Mangan                                | Arsen                    | Cobalt           | AOX               | 1                 |                      |
| µg/l                   | µg/l               | μg/l                                  | μg/L                     |                  | mg/l              | -                 |                      |
| μ <u>η</u> ση<br>19000 | μg/i<br>1610       | μg/i<br><5                            | μg/L<br>28               | μg/l<br>1.7      |                   |                   |                      |
| 19000                  | 1010               | \0                                    | 20                       | 1,1              | 0,04              | J                 |                      |
| PCB 8                  | НСН                | PCB 18                                | PCB 28                   | PCB 52           | PCB 101           | PCB 138           | PCB 153              |
| μg/l                   | μg/l               | μg/l                                  | μg/l                     | μg/l             | μg/l              | μg/l              | μg/l                 |
| <                      | <                  | <                                     | <                        | 0,007            | 0,011             | 0,019             | 0,01                 |
| PCB 180                | PCB 77             | PCB 105                               | PCB 118                  | PCB 126          | PCB 169           | PCB 189           | l                    |
| μg/l                   | μg/l               | μg/l                                  | μg/l                     | μg/l             | μg/l              | μg/l              |                      |
| 0.002                  | γ9/1               | 0,001                                 | γ9/1                     | γ9/1             | γς,,              | γ9/1              |                      |
| 0,002                  |                    | 0,001                                 |                          | <u> </u>         |                   |                   | ļ                    |
| Naphthalin             | Acenaphthylen      | Acenaphten                            | Fluoren                  | Phenanthren      | Anthracen         | Fluoranthen       | Pyren                |
| μg/l                   | μg/l               | μg/l                                  | μg/l                     | μg/l             | μg/l              | μg/l              | μg/l                 |
| 0,25                   | 0                  | 0,001                                 | 0,003                    | 0,008            | 0                 | 0,005             | 0,005                |
| Banza(a)               | Charan             | Bonzo(b)                              | Ponzo(k)                 | Banza(a) numan   | Indeno(1,2,3-     | Dihan=(a h)       | Banna/a h i\         |
| Benzo(a)-              | Chrysen            | Benzo(b)-<br>fluoranthen              | Benzo(k)-<br>fluoranthen | Benzo(a)-pyren   |                   | Dibenz(a,h)-      | Benzo(g,h,i)         |
| anthracen<br>µg/l      | μg/l               | µg/l                                  | µg/l                     | μg/l             | cd)-pyren<br>µg/l | anthracen<br>µg/l | perylen<br>µg/l      |
| <u>μ</u> g/ι<br>0      | 0,001              | 0,001                                 | 0                        | 0,001            | μ <u>υ</u> σ/1    | 0                 | μg/i<br><            |
|                        | •                  | , , , , , , , , , , , , , , , , , , , |                          | ,                |                   |                   |                      |
| Biphenyl               | Benzol             | Toluol                                | Ethylbenzol              | m-/p-Xylol       | o-Xylol           | Dichlormethan     | 1,1-<br>Dichlorethen |
| μg/l                   | μg/l               | μg/l                                  | μg/l                     | μg/l             | μg/l              | μg/l              | μg/l                 |
| 0,001                  | <                  | <                                     | 0,25                     | 2,2              | 0,86              | <                 | <                    |
| cis-1,2-               | trans-1,2-         | Trichlor-methan                       | 1,1,1-                   | Tetrachlor-      | 1,2-              | Trichlorethen     | Bromdichlor          |
| Dichlorethen           | Dichlorethen       |                                       | Trichlorethan            | methan           | Dichlorethan      |                   | methan               |
| µg/l                   | μg/l               | μg/l                                  | μg/l                     | μg/l             | μg/l              | μg/l              | μg/l                 |
| <                      | <                  | <                                     | <                        | <                | <                 | <                 | <                    |
|                        |                    |                                       |                          |                  |                   |                   |                      |
| 1,1,2-                 | Tetrachlorethen    | Dibromchlor-                          | Tribrom-                 | 1,2-             | 1,3-              | 1,4-              | KW-Index             |
| Trichlorethan          |                    | methan                                | methan                   | Dichlorbenzol    | Dichlorbenzol     | Dichlorbenzol     | (H53)                |
| μg/l                   | μg/l               | μg/l                                  | μg/l                     | μg/l             | μg/l              | μg/l              | mg/l                 |
| <                      | <                  | <                                     | <                        | <                | <                 | <                 | -                    |

|                   |                          |                                                     | Datenblatt Pro  | DC 141. 2-4 |               |                                       |             |
|-------------------|--------------------------|-----------------------------------------------------|-----------------|-------------|---------------|---------------------------------------|-------------|
| fälle aus der Vei | rbrennung oder F         | yrolyse von Abfälle                                 | n               |             | lfd Nr.       | EAV                                   | Datum       |
|                   |                          |                                                     |                 |             | 24            | 190113                                | 17.10.2002  |
|                   |                          | Chemiso                                             | che Charakteris | ierung - Fe | ststoff       |                                       |             |
| Arsen             | Blei                     | Cadmium                                             | Chrom           | Kupfer      | Nickel        | Quecksilber                           | Zink        |
| mg/kg             | mg/kg                    | mg/kg                                               | mg/kg           | mg/kg       | mg/kg         | mg/kg                                 | mg/kg       |
| 33                | 6100                     | 270                                                 | 250             | 990         | 83            | 11                                    | 16500       |
| Kohlenwa          | sserstoffe               | lipophile Stoffe                                    | тос             | Benzol      | Toluol        | Ethylbenzol                           | Xylol       |
| GEV               | V.%                      | Gew.%                                               | Gew.%           | mg/kg       | mg/kg         | mg/kg                                 | mg/kg       |
| <0,0              | 002                      | <0,01                                               | 1               | <0,01       | 0,01          | 0,13                                  | 0,56        |
| Summe BTEX        | Naphthalin               | Acenaphten                                          | Acenaphtylen    | Fluoren     | Phenanthren   | Anthracen                             | Fluoranthen |
| mg/kg             | mg/kg                    | mg/kg                                               | mg/kg           | mg/kg       | mg/kg         | mg/kg                                 | mg/kg       |
| 0,7               | 0,12                     | <0,1                                                | <0,1            | <0,1        | <0,1          | <0,1                                  | <0,1        |
| Pyren             | Benz(a                   | )anthracen                                          | Chrysen         | Benzo(h     | )fluoranthen  | Benzo(k)fl                            | uoranthen   |
| mg/kg             |                          | ng/kg                                               | mg/kg           |             | ng/kg         | · · · · · · · · · · · · · · · · · · · | /kg         |
| <0,1              |                          | <0,1                                                | <0,1            |             | <0,1          |                                       | ),1         |
| Dibenz(ah)        | anthracen                | Benzo(gh                                            | i)nervlen       | Indeno(1    | ,2,3-cd)pyren | Benzo(a)pyren                         | AOX         |
| ,                 |                          | <del>- '- '- '- '- '- '- '- '- '- '- '- '- '-</del> | <i>.</i> . •    |             |               | mg/kg                                 | mg/kg       |
| <0                | mg/kg mg/kg<br><0,1 <0,1 |                                                     | i,1             |             | ng/kg<br><0,1 | <0,1                                  | 380         |
| Wasserlösli       | icher Anteil             | Summe PA                                            | K (16 EPA)      |             |               |                                       |             |
| Gav               | v.%                      | mg                                                  |                 |             |               |                                       |             |

# Bemerkungen

Filterstaub, hygroskopisch, feines Pulver, hellgrau; für LB-Test nicht aufgesalzen; gelber Niederschlag nach pH-Einstellung des Eluates



| Datenblatt Probe Nr. 26                                           |         |        |            |
|-------------------------------------------------------------------|---------|--------|------------|
| Schlämme aus der betriebseigenen Abwasserbehandlung, mit Ausnahme | lfd Nr. | EAV    | Datum      |
| derjeniger, die unter 060502 fallen.                              | 26      | 060503 | 27.06.2002 |

# Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 8                     | 17,1                    | 22,4                    | ja        |
| 100        | 8                     | 13,1                    | 17,4                    | ja        |
|            |                       |                         |                         |           |
| Median     | 8                     | 15,1                    | 19,9                    | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 5                     | 34,5                    | 38,0                    | 45,6                    | ja        |
| 100        | 2                     | =                       | -                       | -                       | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 3,5                   | 34,5                    | 38,0                    | 45,6                    | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 68,1       | 32                    | 4,5                     | 20,7                    | ja        |
| 65,7       | 16                    | 6,8                     | 25,8                    | ja        |
|            |                       |                         |                         |           |
| Median     | 24                    | 5,6                     | 23,2                    | ja        |

0,67

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 82,2       | 10-100                | ja        |
|            |                       |           |
|            |                       |           |
| Median     | 10-100                | ja        |

1,5

Pflanzentest - Gesamtprobe

Median

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | >32                     | >32                                 | 16                            | ja        |
|                  | -                       | -                                   | -                             |           |
| Lycopersicon     | 32                      | >32                                 | >32                           | ja        |
|                  | >256                    | >256                                | >256                          | ja        |
| Avena            | 8                       | 16                                  | 16                            | ja        |
|                  | <16                     | 128                                 | >256                          | ja        |
| repräsentativste | r G <sub>P</sub> -Wert  |                                     | _                             | 64        |

| umu-Test - Eluat | ohne S9  |          |              | Eluat mit S9 |          |          |              |
|------------------|----------|----------|--------------|--------------|----------|----------|--------------|
|                  | GEU      | VD       | Gentoxizität |              | GEU      | VD       | Gentoxizität |
|                  | IR < 1,5 | IR < 1,5 | GEU > 1,5    |              | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|                  | 1,5      | 0,67     | nein         |              | 1,5      | 0,67     | nein         |
|                  | 1,5      | 0,67     | nein         |              | 1,5      | 0,67     | nein         |

Median

nein

0,67

nein

1,5

|                      |                    |                    | Datenblatt Pr          | ohe Nr 26       |               |               |                      |
|----------------------|--------------------|--------------------|------------------------|-----------------|---------------|---------------|----------------------|
| Schlämme aus der     | betriebseigenen Al |                    |                        |                 | lfd Nr.       | EAV           | Datum                |
|                      | •                  | Jwasserberianulu   | ilig, illit Austialili | ie              | 26            | 060503        | 27.06.2002           |
| derjeniger, die unte | er ububuz tailen.  |                    |                        |                 | 20            | 060503        | 27.06.2002           |
|                      |                    | Chemi              |                        | erisierung - El | uat           |               |                      |
| Trockengewicht       | Wassergehalt %     | pН                 | LF µS/cm               |                 |               |               |                      |
| 77,7                 | 22,3               | 8,25               | 1601                   |                 |               |               |                      |
| DOC                  | TOC                | NH4                | Quecksilber            | Cadmium         | Chrom,        | Nickel        | Kupfer               |
| mg/l                 | mg/l               | mg/L               | μg/l                   | μg/l            | μg/l          | μg/l          | μg/l                 |
| 250                  | -                  | 77                 | 1,4                    | 0,5             | 1,7           | 802           | 24,1                 |
| Blei                 | Zink               | Mangan             | Arsen                  | Cobalt          | AOX           | 1             |                      |
| µg/l                 | µg/l               | µg/l               | µg/L                   | µg/l            | mg/l          |               |                      |
| μg/i<br>2,16         | 132                | μ <u>γ</u> η<br>86 | μg/L<br>7              | μg/i<br>3       | 0,03          |               |                      |
| 2,10                 | 132                | 00                 | /                      | 3               | 0,03          |               |                      |
| PCB 8                | нсн                | PCB 18             | PCB 28                 | PCB 52          | PCB 101       | PCB 138       | PCB 153              |
| μg/l                 | μg/l               | μg/l               | μg/l                   | μg/l            | μg/l          | μg/l          | μg/l                 |
|                      | <                  | <                  | <                      | 0,006           | 0,018         | 0,018         | 0,012                |
|                      |                    |                    |                        |                 |               |               |                      |
| PCB 180              | PCB 77             | PCB 105            | PCB 118                | PCB 126         | PCB 169       | PCB 189       |                      |
| μg/l                 | μg/l               | μg/l               | μg/l                   | μg/l            | μg/l          | μg/l          |                      |
| <                    | -                  | <                  | <                      | -               | -             | -             |                      |
| Naphthalin           | Acenaphthylen      | Acenaphten         | Fluoren                | Phenanthren     | Anthracen     | Fluoranthen   | Pyren                |
| μg/l                 | μg/l               | μg/l               | μg/l                   | μg/l            | μg/l          | μg/l          | μg/l                 |
| 1,696                | 0,03               | 0,134              | 0,089                  | 0,067           | <             | 0,015         | 0,042                |
| •                    |                    | ·                  |                        | •               |               |               |                      |
| Benzo(a)-            | Chrysen            | Benzo(b)-          | Benzo(k)-              | Benzo(a)-pyren  | Indeno(1,2,3- | Dibenz(a,h)-  | Benzo(g,h,i)-        |
| anthracen            |                    | fluoranthen        | fluoranthen            |                 | cd)-pyren     | anthracen     | perylen              |
| μg/l                 | μg/l               | μg/l               | μg/l                   | μg/l            | μg/l          | μg/l          | μg/l                 |
| 0,004                | <                  | 0,002              | 0,001                  | 0,002           | 0,009         | <             | 0,001                |
| Distance d           |                    | 7-11               | Edualia                | / <b>V</b> 1-!  | - V-1-1       | D1-1-14       | 4.4                  |
| Biphenyl             | Benzol             | Toluol             | Ethylbenzol            | m-/p-Xylol      | o-Xylol       | Dichlormethan | 1,1-                 |
| µg/l                 | μg/l               | μg/l               | μg/l                   | μg/l            | μg/l          | μg/l          | Dichlorethen<br>µg/l |
| 0,032                | μg/i<br><          | μ <u>y</u> /ι<br>< | μ <u>y</u> /1<br>7     | μg/i<br>16      | μ <u>γ</u> /1 | μg/i<br><     | μg/i<br><            |
| 0,002                |                    | •                  | · '                    | 10              | <u> </u>      |               | 7                    |
| cis-1,2-             | trans-1,2-         | Trichlor-          | 1,1,1-                 | Tetrachlor-     | 1,2-          | Trichlorethen | Bromdichlor-         |
| Dichlorethen         | Dichlorethen       | methan             | Trichlorethan          | methan          | Dichlorethan  |               | methan               |
| μg/l                 | μg/l               | μg/l               | μg/l                   | μg/l            | μg/l          | μg/l          | μg/l                 |
| <                    | <                  | <                  | <                      | <               | · <           | <             | <                    |
|                      |                    |                    |                        |                 |               |               |                      |
| 1,1,2-               | Tetrachlorethen    | Dibromchlor-       | Tribrom-               | 1,2-            | 1,3-          | 1,4-          | KW-Index             |
| Trichlorethan        |                    | methan             | methan                 | Dichlorbenzol   | Dichlorbenzol | Dichlorbenzol | (H53)                |
| μg/l                 | μg/l               | μg/l               | μg/l                   | μg/l            | μg/l          | μg/l          | mg/l                 |
| <                    | <                  | <                  | <                      | <               | <b>~</b>      | <             | -                    |

© LfU Anhang 113

| betriebseigenen A | Abwasserbehandlu                                                                     | ng, mit Ausnahme                              | ;                      | Ifd Nr.                           | EAV                                     | Datum                                   |
|-------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------|
| r 060502 fallen.  |                                                                                      |                                               |                        | 26                                | 060503                                  | 27.06.2002                              |
|                   | Chemisc                                                                              | he Charakteris                                | sierung - Fes          | tstoff                            |                                         |                                         |
| Blei              | Cadmium                                                                              | Chrom                                         | Kupfer                 | Nickel                            | Quecksilber                             | Zink                                    |
| mg/kg             | mg/kg                                                                                | mg/kg                                         | mg/kg                  | mg/kg                             | mg/kg                                   | mg/kg                                   |
| 21                | 0,29                                                                                 | 11                                            | 114                    | 190                               | 0,09                                    | 1000                                    |
| sserstoffe        | lipophile Stoffe                                                                     | тос                                           | Benzol                 | Toluol                            | Ethvibenzol                             | Xylol                                   |
| V.%               | Gew.%                                                                                | Gew.%                                         | ma/ka                  | ma/ka                             |                                         | mg/kg                                   |
| 4                 | 13                                                                                   | 16,2                                          | <0,01                  | 0,01                              | 0,08                                    | 0,3                                     |
| Nanhthalin        | Acenanhten                                                                           | <b>Acenanhtylen</b>                           | Fluoren                | Phenanthren                       | Anthracen                               | Fluoranthe                              |
|                   |                                                                                      |                                               |                        |                                   |                                         | mg/kg                                   |
| 8,6               | 0,23                                                                                 | <0,1                                          | 0,55                   | 3,8                               | 0,1                                     | 0,94                                    |
| D(-)-             | 41                                                                                   | 01                                            | D (l-)6                |                                   | D (L) (I                                | 41                                      |
|                   |                                                                                      |                                               |                        |                                   |                                         |                                         |
|                   |                                                                                      |                                               |                        |                                   |                                         |                                         |
| 4                 | ,9                                                                                   | 0,28                                          | <(                     | J, I                              | <0                                      | , 1                                     |
| anthracen         | Benzo(gh                                                                             | i)perylen                                     | Indeno(1,2             | ,3-cd)pyren                       | Benzo(a)pyren                           | AOX                                     |
| /kg               | mg/                                                                                  | 'kg                                           | mg                     | g/kg                              | mg/kg                                   | mg/kg                                   |
| ,1                | <0                                                                                   | ,1                                            | <(                     | ),1                               | <0,1                                    | Ž1 Š                                    |
| cher Anteil       | Summe PA                                                                             | K (16 EPA)                                    |                        | - /                               | -,                                      |                                         |
| v.%               | mg/                                                                                  | , ,                                           |                        |                                   |                                         |                                         |
|                   | Blei mg/kg 21 sserstoffe V.% 4  Naphthalin mg/kg 8,6  Benz(a)a mg 4 anthracen /kg ,1 | Chemisc   Cadmium   mg/kg   mg/kg   21   0,29 | Chemische Charakterist | Chemische Charakterisierung - Fes | Chemische Charakterisierung - Feststoff | Chemische Charakterisierung - Feststoff |

# <u>Bemerkungen</u>

fest, krümelig, grau-braun, Geruch nach Lösungsmittel



| Datenblatt Probe Nr. 27                                                       |         |        |            |
|-------------------------------------------------------------------------------|---------|--------|------------|
| Abfälle aus HZVA und Entfernung von Farben und Lacken - Farb- und Lack-       | lfd Nr. | EAV    | Datum      |
| abfälle, die organische Lösemittel oder andere gefährlichen Stoffe enthalten. | 27      | 080111 | 27.06.2002 |

# Ökotoxikologische Charakterisierung

Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | >10                   | -                       | -                       | ja        |
| 100        | 80                    | 1,6                     | 2,2                     | ja        |
| 100        | 100                   | 1,1                     | 1,4                     | ja        |
| Median     | 90                    | 1,3                     | 1,8                     | ja        |

Daphnientest - Eluat

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 100                   | 2,1                     | 2,4                     | 3,2                     | ja        |
| 100        | 50                    | 2,8                     | 3,1                     | 3,8                     | ja        |
|            |                       |                         |                         |                         |           |
| Median     | 75                    | 2,4                     | 2,7                     | 3,5                     | ja        |

Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 96,4       | >16                   | 1,2                     | 3,6                     | ja        |
| 100        | 128                   | 0,8                     | 2,9                     | ja        |
| 100        | 128                   | 0,7                     | 2,7                     | ja        |
| Median     | 128                   | 0,8                     | 2,9                     | ja        |

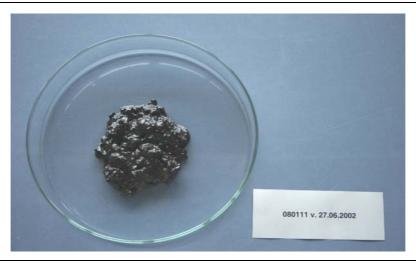
Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 104,1      | >100                  | ja        |
|            |                       |           |
|            |                       |           |
| Median     | >100                  | ja        |
|            |                       |           |

Pflanzentest - Gesamtprobe

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | >1024                   | 1024                                | -                             | ja        |
|                  | -                       | -                                   | -                             | -         |
| Lycopersicon     | >1024                   | >1024                               | >1024                         | ja        |
|                  | >16384                  | 16384                               | 16384                         | ja        |
| Avena            | <64                     | 256                                 | -                             | ja        |
|                  | <1024                   | 4196                                | >16384                        | ja        |
| renräsentativste | r G <sub>n</sub> -Wert  |                                     |                               | 16384     |

umu-Test - Eluat ohne S9 Eluat mit S9


|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 6        | 0,17     | ja           |        | 1,5      | 0,67     | nein         |
|        | 6        | 0,17     | ja           |        | 1,5      | 0,67     | nein         |
| Median | 6        | 0,17     | ja           | Median | 1,5      | 0,67     | nein         |

|                        |                       |                          | Datenblatt Pr            | ohe Nr. 27       |                            |                           |               |
|------------------------|-----------------------|--------------------------|--------------------------|------------------|----------------------------|---------------------------|---------------|
| Δhfälle aus H7\/Δ      | und Entfernung vor    |                          |                          |                  | lfd Nr.                    | EAV                       | Datum         |
|                        | sche Lösemittel ode   |                          |                          |                  | 27                         | 080111                    | 27.06.2002    |
| abianc, die organie    | oric Loscillitter ode | Ŭ                        |                          |                  |                            | 000111                    | 27.00.2002    |
|                        |                       | Chemis                   | sche Charakte            | erisierung - Elu | uat                        |                           |               |
| Trockengewicht         | Wassergehalt %        | pН                       | LF µS/cm                 |                  |                            |                           |               |
| 49                     | 51                    | 6,65                     | 63,7                     |                  |                            |                           |               |
| DOC                    | TOC                   | NH4                      | Quecksilber              | Cadmium          | Chrom,                     | Nickel                    | Kupfer        |
| mg/l                   | mg/l                  | mg/L                     | μg/l                     | μg/l             | μg/l                       | μg/l                      | μg/l          |
| 11000                  | -                     | 0,14                     | 0,2                      | 2,7              | <0,5                       | 9,8                       | 20,7          |
| Blei                   | Zink                  | Mangan                   | Arsen                    | Cobalt           | AOX                        | 1                         |               |
| µg/l                   | µg/l                  | μg/l                     | μg/L                     | μg/l             | mg/l                       |                           |               |
| 0,93                   | 11200                 | 7                        | <0,2                     | -                | 0,03                       |                           |               |
|                        | 1 11011               | DOD 40                   | BOD 00                   | DOD 50           | DOD 404                    | DOD 400                   | DOD 450       |
| PCB 8                  | HCH                   | PCB 18                   | PCB 28                   | PCB 52           | PCB 101                    | PCB 138                   | PCB 153       |
| μg/l<br><              | μg/l<br><             | μg/l<br><                | μg/l<br><                | μg/l<br><        | μg/l<br>0,004              | μg/l<br><                 | μg/l<br><     |
|                        |                       |                          |                          |                  | 0,004                      | `                         |               |
| PCB 180                | PCB 77                | PCB 105                  | PCB 118                  | PCB 126          | PCB 169                    | PCB 189                   |               |
| μg/l                   | μg/l                  | μg/l                     | μg/l                     | μg/l             | μg/l                       | μg/l                      |               |
| <                      | <                     | <                        | <                        | <                | <                          | <                         |               |
| Naphthalin             | Acenaphthylen         | Acenaphten               | Fluoren                  | Phenanthren      | Anthracen                  | Fluoranthen               | Pyren         |
| µg/l                   | µg/l                  | µg/l                     | µq/l                     | µg/l             | µg/l                       | µq/l                      | µq/l          |
| -                      | -                     | 0,007                    | 0,018                    | 0,004            | 0,019                      | 0,001                     | 0,002         |
| Benzo(a)-<br>anthracen | Chrysen               | Benzo(b)-<br>fluoranthen | Benzo(k)-<br>fluoranthen | Benzo(a)-pyren   | Indeno(1,2,3-<br>cd)-pyren | Dibenz(a,h)-<br>anthracen | Benzo(g,h,i)- |
| μg/l                   | μg/l                  | μg/l                     | μg/l                     | μg/l             | μg/l                       | μg/l                      | μg/l          |
| 0                      | <                     | <                        | <                        | 0,001            | <                          | <                         | <             |
| Biphenyl               | Benzol                | Toluol                   | Ethylbenzol              | m-/p-Xylol       | o-Xylol                    | Dichlor-                  | 1.1-          |
| Бірпспуі               | Benzoi                | Toldor                   | Laryberizor              | III-7p-xyloi     | O-Ayloi                    | methan                    | Dichlorethen  |
| μg/l                   | μg/l                  | μg/l                     | μg/l                     | μg/l             | μg/l                       | μg/l                      | μg/l          |
| -                      | -                     | -                        | -                        | -                | -                          | -                         | -             |
| cis-1,2-               | trans-1,2-            | Trichlor-                | 1,1,1-                   | Tetrachlor-      | 1,2-                       | Trichlorethen             | Bromdichlor   |
| Dichlorethen           | Dichlorethen          | methan                   | Trichlorethan            | methan           | Dichlorethan               |                           | methan        |
| μg/l                   | µg/l                  | µg/l                     | μg/l                     | µg/l             | μg/l                       | μg/l                      | μg/l          |
| -                      | - µg/-                | μg/·<br>-                | μg/·<br>-                | μg/·             | μg/·<br>-                  | - pg/-                    | μg/·          |
|                        |                       |                          |                          |                  |                            |                           |               |
| 1,1,2-                 | Tetrachlor-ethen      | Dibromchlor-             | Tribrom-                 | 1,2-             | 1,3-                       | 1,4-                      | KW-Index      |
| Trichlorethan          |                       | methan                   | methan                   | Dichlorbenzol    |                            | Dichlorbenzol             | (H53)         |
| μg/l                   | μg/l                  | μg/l                     | μg/l                     | μg/l             | μg/l                       | μg/l                      | mg/l          |
| -                      | -                     | -                        | -                        | -                | -                          | -                         | -             |

|                                |                   | ı                   | Datenblatt Pro        | De Nr. 27    |              |               |            |
|--------------------------------|-------------------|---------------------|-----------------------|--------------|--------------|---------------|------------|
| ofälle aus HZVA i              | und Entfernung vo | n Farben und Laci   | ken - Farb- und La    | ick-         | Ifd Nr.      | EAV           | Datum      |
| fälle, die organis             | che Lösemittel od | er andere gefährlid | chen Stoffe enthal    | ten.         | 27           | 080111        | 27.06.2002 |
|                                |                   | Chemisc             | he Charakteris        | ierung - Fes | tstoff       |               |            |
| Arsen                          | Blei              | Cadmium             | Chrom                 | Kupfer       | Nickel       | Quecksilber   | Zink       |
| mg/kg                          | mg/kg             | mg/kg               | mg/kg                 | mg/kg        | mg/kg        | mg/kg         | mg/kg      |
| 0,92                           | 224               | 0,32                | 15                    | 2,1          | 13           | <0,05         | 35400      |
| Kohlenwa                       | sserstoffe        | lipophile Stoffe    | тос                   | Benzol       | Toluol       | Ethylbenzol   | Xylol      |
| GEV                            | V.%               | Gew.%               | Gew.%                 | mg/kg        | mg/kg        | mg/kg         | mg/kg      |
| 1:                             | 3                 | 3,9                 | 35,1                  | 0,87         | 100          | 8200          | 31000      |
| Summe BTEX                     | Naphthalin        | Acenaphten          | Acenaphtylen          | Fluoren      | Phenanthren  | Anthracen     | Fluoranthe |
| mg/kg                          | mg/kg             | mg/kg               | mg/kg                 | mg/kg        | mg/kg        | mg/kg         | mg/kg      |
| 39301                          | 1007              | 0,66                | 0,2                   | <0,1         | 1,4          | <0,1          | 0,82       |
| Pyren                          | Benz(a)a          | anthracen           | Chrysen               | Benzo(h)     | fluoranthen  | Benzo(k)flu   | uoranthen  |
| mg/kg                          | . ,               | g/kg                | mg/kg                 | mg/kg        |              | mg/kg         |            |
| <0,1                           |                   | ,29                 | 0,2                   |              | :0,1         | <0,1          |            |
|                                | anthracen         | Benzo(gh            | i)pervlen             | Indeno(1.3   | 2,3-cd)pyren | Benzo(a)pyren | AOX        |
| Dibenz(ah)                     | ` '               |                     | <i>.</i>              |              |              | mg/kg         | mg/kg      |
| Dibenz(ah)                     | ' NU              |                     | mg/kg mg/k<br>0,3 0,3 |              | 37.3         |               |            |
| <b>Dibenz(ah)</b><br>mg.<br><0 | ,1                | Ŏ,                  | 3                     |              | J,3          | 0,23          | 420        |
|                                | , .               | Summe PA            |                       |              | J,3          | 0,23          | 420        |

### Bemerkungen

flüssig-pastös, tiefschwarz gefärbt; hoher Lösemittelgehalt im Eluat führt zu Zweiphasensystem; Lösemittelphase wurde mit einem Scheidetrichter dekantiert und verworfen; Membranfilter (Cellulose-Nitrat) löste sich auf, Probe nur glasfaserfiltriert



# Datenblatt Probe Nr. 28

Abfälle aus der chemischen Oberflächenbearbeitung und Beschichtung von Metallen und anderen Werkstoffen - Schlämme und Filterkuchen mit Ausnahme derjenigen, die unter 110109 fallen.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 28      | 110110 | 16.10.2002 |

# Ökotoxikologische Charakterisierung

### Algentest - Eluat

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| -4,8       | 1,25                  | -                       | -                       | nein      |
| -31,8      | 1,25                  | -                       | -                       | nein      |
|            |                       |                         |                         |           |

#### Daphnientest - Eluat

| Dupiniicitest - En | uut                   |                         |                         |                         |           |
|--------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| 100%-Probe         | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
| [%Hemmung]         |                       | [%]                     | [%]                     | [%]                     |           |
| 0                  | 1                     | -                       | -                       | •                       | nein      |
| 0                  | 1                     | -                       | -                       | 1                       | nein      |
|                    |                       |                         |                         |                         |           |
| Median             | 1                     | -                       | -                       | -                       | nein      |

#### Leuchtbakterientest - Eluat

| - Cacilibaltto lollt | oct =:uut             |                         |                         |           |
|----------------------|-----------------------|-------------------------|-------------------------|-----------|
| 50%-Probe            | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
| [%Hemmung]           |                       | [%]                     | [%]                     |           |
| -0,8                 | 2                     | -                       | -                       | nein      |
| -4,9                 | 2                     | -                       | -                       | nein      |
|                      |                       |                         |                         |           |
| Median               | 2                     | -                       | -                       | nein      |

Bakterienkontakttest - Gesamtprobe

| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 48,7       | 2-10                  | ja        |
| 59,7       | 2-10                  | ja        |
|            |                       |           |
| Median     | 2-10                  | ja        |

Pflanzentest - Gesamtprobe

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | >32                     | 4                                   | 4                             | ja        |
|                  | 16                      | 8                                   | 4                             | ja        |
| Lycopersicon     | 4                       | 2                                   | 2                             | ja        |
|                  | 4                       | 4                                   | 4                             | ja        |
| Avena            | -                       | 2                                   | 4                             | ja        |
|                  | 8                       | 4                                   | 2                             | ja        |
| repräsentativste | r G <sub>P</sub> -Wert  |                                     |                               | 4         |

umu-Test - Eluat ohne S9

| E | luat | mit | S9 |
|---|------|-----|----|

|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        | 1,5      | 0,67     | nein         |        | 1,5      | 0,67     | nein         |
|        |          |          |              |        |          |          |              |
| Median | 1,5      | 0,67     | nein         | Median | 1,5      | 0,67     | nein         |

|                       |                                                                                             |                       | Datenblatt F   | Probe Nr. 28       |                       |                       |                       |
|-----------------------|---------------------------------------------------------------------------------------------|-----------------------|----------------|--------------------|-----------------------|-----------------------|-----------------------|
| Abfälle aus der che   | Abfälle aus der chemischen Oberflächenbearbeitung und Beschichtung von Metallen Ifd Nr. EAV |                       |                |                    |                       |                       |                       |
| und anderen Werk      | stoffen - Schlämme                                                                          | e und Filterkuche     | n mit Ausnahme | derjenigen,        | 28                    | 110110                | 16.10.2002            |
| die unter 110109 fa   | allen.                                                                                      |                       |                |                    |                       |                       |                       |
|                       |                                                                                             | Chem                  | nische Charak  | cterisierung - Elu | at                    |                       |                       |
| Trockengewicht        | Wassergehalt %                                                                              | рН                    | LF μS/cm       |                    |                       |                       |                       |
| 18,4                  | 81,6                                                                                        | 7,92                  | 1679           |                    |                       |                       |                       |
| DOC                   | тос                                                                                         | NH4                   | Quecksilber    | Cadmium            | Chrom,                | Nickel                | Kupfer                |
| mg/l                  | mg/l                                                                                        | mg/L                  | μg/l           | μg/l               | µq/l                  | µg/l                  | μg/l                  |
| 14                    | -                                                                                           | 9,8                   | 0,1            | 0,3                | <0,5                  | 81,6                  | 8,3                   |
|                       |                                                                                             |                       |                |                    |                       | 1                     |                       |
| Blei                  | Zink                                                                                        | Mangan                | Arsen          | Cobalt             | AOX                   |                       |                       |
| μg/l                  | μg/l                                                                                        | μg/l                  | μg/L           | μg/l               | mg/l                  |                       |                       |
| 0,92                  | 113                                                                                         | 18                    | <0,2           | 0,7                | 0,02                  | J                     |                       |
| PCB 8                 | нсн                                                                                         | PCB 18                | PCB 28         | PCB 52             | PCB 101               | PCB 138               | PCB 153               |
| µg/l                  | µg/l                                                                                        | µg/l                  | μg/l           | ug/l               | µg/l                  | ug/l                  | µg/l                  |
| μg/1<br><             | μ9/1                                                                                        | μ <u>γ</u> γη <       | μg/1<br><      | 0,004              | 0,011                 | 0,016                 | 0,008                 |
|                       | `                                                                                           |                       |                | 0,004              | 0,011                 | 0,010                 | 0,000                 |
| PCB 180               | PCB 77                                                                                      | PCB 105               | PCB 118        | PCB 126            | PCB 169               | PCB 189               |                       |
| μg/l                  | μg/l                                                                                        | μg/l                  | μg/l           | μg/l               | μg/l                  | μg/l                  |                       |
| 0,001                 | <                                                                                           | 0,001                 | <              | <                  | <                     | <                     |                       |
|                       | 1                                                                                           |                       |                | 1                  |                       |                       |                       |
| Naphthalin            | Acenaphthylen                                                                               | Acenaphten            | Fluoren        | Phenanthren        | Anthracen             | Fluoranthen           | Pyren                 |
| µg/l                  | μg/l                                                                                        | μg/l                  | μg/l           | μg/l               | μg/l                  | μg/l                  | µg/l                  |
| 0,081                 | <                                                                                           | 0,003                 | <              | 0,008              | <                     | 0,005                 | 0,004                 |
| Benzo(a)-             | Chrysen                                                                                     | Benzo(b)-             | Benzo(k)-      | Benzo(a)-pyren     | Indeno(1,2,3-         | Dibenz(a,h)-          | Benzo(g,h,i)-         |
| anthracen             | J, 300                                                                                      | fluoranthen           | fluoranthen    | (a, pj.c           | cd)-pyren             | anthracen             | perylen               |
| µg/l                  | μg/l                                                                                        | μg/l                  | μg/l           | μg/l               | μg/l                  | μg/l                  | μg/l                  |
| <                     | 0,003                                                                                       | <                     | <              | <                  | <                     | 0,01                  | 0                     |
|                       |                                                                                             |                       | •              |                    |                       | •                     | •                     |
| Biphenyl              | Benzol                                                                                      | Toluol                | Ethylbenzol    | m-/p-Xylol         | o-Xylol               | Dichlor-methan        | 1,1-                  |
| -                     |                                                                                             |                       |                |                    |                       |                       | Dichlorethen          |
| μg/l                  | μg/l                                                                                        | μg/l                  | μg/l           | μg/l               | μg/l                  | μg/l                  | μg/l                  |
| 0,002                 | <                                                                                           | <                     | <              | 0,33               | 0,15                  | <                     | <                     |
|                       |                                                                                             |                       |                |                    |                       |                       |                       |
| cis-1,2-              | trans-1,2-                                                                                  | Trichlor-             | 1,1,1-         | Tetrachlor-methan  | 1,2-                  | Trichlorethen         | Bromdichlor-          |
| Dichlorethen          | Dichlorethen                                                                                | methan                | Trichlorethan  |                    | Dichlorethan          |                       | methan                |
| μg/l                  | μg/l                                                                                        | μg/l                  | μg/l           | μg/l               | μg/l                  | μg/l                  | μg/l                  |
| <                     | <                                                                                           | <                     | <              | <                  | <                     | <                     | <                     |
| 442                   | Totrochlor other                                                                            | Dibromoble            | Tribrom        | 4.2 Diablarbarres  | 4.2                   | 1 4 4                 | KW Inde:              |
| 1,1,2-                | Tetrachlor-ethen                                                                            | Dibromchlor-          | Tribrom-       | 1,2-Dichlorbenzol  | 1,3-                  | 1,4-<br>Dichlorbenzol | KW-Index              |
| Trichlorethan<br>µg/l | μg/l                                                                                        | <u>methan</u><br>μg/l | methan<br>μg/l | μg/l               | Dichlorbenzol<br>µg/l | µg/l                  | ( <b>H53)</b><br>mg/l |
| μg/i<br><             | μg/i<br><                                                                                   | μ <u>γ</u> //         | μg/i<br><      | μg/i<br><          | μg/i<br><             | μg/i<br><             |                       |

© LfU Anhang 119

# Datenblatt Probe Nr. 28

Abfälle aus der chemischen Oberflächenbearbeitung und Beschichtung von Metallen und anderen Werkstoffen - Schlämme und Filterkuchen mit Ausnahme derjenigen, die unter 110109 fallen.

| lfd Nr. | EAV    | Datum      |
|---------|--------|------------|
| 28      | 110110 | 16.10.2002 |
|         |        |            |

# Chemische Charakterisierung - Feststoff

| Arsen | Blei  | Cadmium | Chrom | Kupfer | Nickel | Quecksilber | Zink  |
|-------|-------|---------|-------|--------|--------|-------------|-------|
| mg/kg | mg/kg | mg/kg   | mg/kg | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 16    | 12    | 0,05    | 180   | 94     | 1100   | <0,05       | 1020  |
|       |       |         |       |        |        |             |       |

| Kohlenwasserstoffe | lipophile Stoffe | TOC   | Benzol | Toluol | Ethylbenzol | Xylol |
|--------------------|------------------|-------|--------|--------|-------------|-------|
| GEW.%              | Gew.%            | Gew.% | mg/kg  | mg/kg  | mg/kg       | mg/kg |
| 0,15               | 0,15             | 2     | <0,01  | <0,01  | <0,01       | <0,01 |

| Summe BTEX | Naphthalin | Acenaphten | Acenaphtylen | Fluoren | Phenanthren | Anthracen | Fluoranthen |
|------------|------------|------------|--------------|---------|-------------|-----------|-------------|
| mg/kg      | mg/kg      | mg/kg      | mg/kg        | mg/kg   | mg/kg       | mg/kg     | mg/kg       |
| <0.04      | <0.1       | <0.1       | <0.1         | <0.1    | <0.1        | <0.1      | <0.1        |

| Pyren | Pyren Benz(a)anthracen |       | Benzo(b)fluoranthen | Benzo(k)fluoranthen |  |
|-------|------------------------|-------|---------------------|---------------------|--|
| mg/kg | mg/kg                  | mg/kg | mg/kg               | mg/kg               |  |
| <0.1  | <0.1                   | <0.1  | <0.1                | <0.1                |  |

| Dibenz(ah)anthracen | Benzo(ghi)perylen | Indeno(1,2,3-cd)pyren | Benzo(a)pyren | AOX   |
|---------------------|-------------------|-----------------------|---------------|-------|
| mg/kg               | mg/kg             | mg/kg                 | mg/kg         | mg/kg |
| <0,1                | <0,1              | <0,1                  | <0,1          | 20    |

| Wasserlöslicher Anteil | Summe PAK (16 EPA) |
|------------------------|--------------------|
| Gew.%                  | mg/kg              |
| 1,1                    | <1                 |

### Bemerkungen

pastös-fest, grau-blau



| Datenblatt Probe Nr. 30                                                |         |        |            |  |  |  |
|------------------------------------------------------------------------|---------|--------|------------|--|--|--|
| Abfälle aus der chemischen Oberflächenbearbeitung und Beschichtung von | lfd Nr. | EAV    | Datum      |  |  |  |
| Metallen und anderen Werkstoffen - Schlämme und Filterkuchen, die ge-  | 30      | 110109 | 27.01.2003 |  |  |  |
| fährliche Stoffe enthalten.                                            | •       |        | •          |  |  |  |

# Ökotoxikologische Charakterisierung

| Alg | qе | n | te | st | - | ΕI | uat |
|-----|----|---|----|----|---|----|-----|
|-----|----|---|----|----|---|----|-----|

| 80%-Probe  | G <sub>A</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 32000                 | 0,0050                  | 0,0079                  | ja        |
| 100        | 20000                 | 0,0048                  | 0,0081                  | ja        |
| 100        | 24000                 | 0,0052                  | 0,0098                  | ja        |
| Median     | 24000                 | 0.0050                  | 0.0081                  | ia        |

| Daphni | entest | - Eluat |
|--------|--------|---------|
|--------|--------|---------|

| 100%-Probe | G <sub>D</sub> -Probe | EC <sub>10</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     | [%]                     |           |
| 100        | 50000                 | -                       | -                       | -                       | ja        |
|            |                       |                         |                         |                         |           |
|            |                       |                         |                         |                         |           |
| Median     | 50000                 | -                       | -                       | -                       | ja        |

### Leuchtbakterientest - Eluat

| 50%-Probe  | G <sub>L</sub> -Probe | EC <sub>20</sub> -Probe | EC <sub>50</sub> -Probe | Toxizität |
|------------|-----------------------|-------------------------|-------------------------|-----------|
| [%Hemmung] |                       | [%]                     | [%]                     |           |
| 100        | 2500                  | 0,04                    | 0,3012                  | ja        |
| 100        | 2500                  | 0,06                    | 0,255                   | ja        |
|            |                       |                         |                         |           |
| Median     | 2500                  | 0,05                    | 0,28                    | ja        |

Bakterienkontakttest - Gesamtprobe

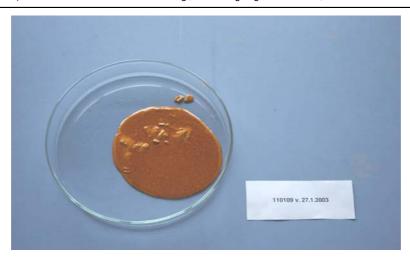
| Probe      | G <sub>B</sub> -Probe | Toxizität |
|------------|-----------------------|-----------|
| [%Hemmung] |                       |           |
| 1          | >100                  | ja        |
| 85,7       | >100                  | ja        |
|            |                       |           |
| Median     | >100                  | ja        |
|            |                       |           |

Pflanzentest - Gesamtprobe

| 50%-Probe        | G <sub>P</sub> Keimrate | G <sub>P</sub> Sprosslängenwachstum | G <sub>P</sub> Trockengewicht | Toxizität |
|------------------|-------------------------|-------------------------------------|-------------------------------|-----------|
| Brassica         | >65536                  | >65536                              | 8192                          | ja        |
|                  | >131072                 | >131072                             | >131072                       | ja        |
| Lycopersicon     | >65536                  | >65536                              | >65536                        | ja        |
|                  | 65536                   | 65536                               | 65536                         | ja        |
| Avena            | 8192                    | <4096                               | 8192                          | ja        |
|                  | <8192                   | 16384                               | 16384                         | ja        |
| repräsentativste | r G <sub>P</sub> -Wert  |                                     |                               | 65536     |

| umu-Test | _ | Eluat | ohne | S9 |  |
|----------|---|-------|------|----|--|

| F | luat | mit | S |
|---|------|-----|---|


|        | GEU      | VD       | Gentoxizität |        | GEU      | VD       | Gentoxizität |
|--------|----------|----------|--------------|--------|----------|----------|--------------|
|        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |        | IR < 1,5 | IR < 1,5 | GEU > 1,5    |
|        | >3072    |          | ja           |        | 3072     | 0,0003   | ja           |
|        | 6140     | 0,0002   | ja           |        | 1540     | 0,0006   | ja           |
|        | 12280    | 0,0001   | ja           |        | 1540     | 0,0006   | ja           |
| Median | 9210     | 0,0001   | ja           | Median | 1540     | 0,0006   | ja           |

| bfälle aus der ch  | emischen Oberfläch   | enbearbeitung u                       | nd Beschichtung | ı von           | lfd Nr.           | EAV            | Datum       |
|--------------------|----------------------|---------------------------------------|-----------------|-----------------|-------------------|----------------|-------------|
|                    | eren Werkstoffen - S |                                       |                 | •               | 30                | 110109         | 27.01.2003  |
| ährliche Stoffe en |                      |                                       |                 |                 |                   |                |             |
|                    |                      | Chemi                                 | sche Charak     | terisierung - I | Eluat             |                |             |
| rockengewicht      | Wassergehalt %       | pl                                    |                 | LF µs/cm        | ]                 |                |             |
| 75,7               | 24,3                 | 1,45 ein                              | g. auf 7        | 20900           |                   |                |             |
| DOC                | TOC                  | NH4                                   | Quecksilber     | Cadmium         | Chrom gesamt      | Nickel         | Kupfer      |
| mg/l               | mg/l                 | mg/L                                  | μg/l            | μg/l            | mg/l              | μg/l           | μg/l        |
| 50                 | -                    | n.b                                   | <50             | <10             | 3.520             | 1830           | 340         |
| Blei               | Zink                 | Magan                                 | Arsen           | Cobalt          | AOX               | Chrom VI       |             |
| µg/l               | μq/l                 | μg/l                                  | μg/L            | μq/l            | mg/l              | mg/l           |             |
| 56                 | 1290                 | 110                                   | <0,5            | <0,2            | <0,5              | 3460           |             |
|                    |                      |                                       |                 | 1               |                   |                |             |
| PCB 8              | HCH                  | PCB 18                                | PCB 28          | PCB 52          | PCB 101           | PCB 138        | PCB 153     |
| μg/l<br><          | μg/l<br><            | μg/l<br><                             | μg/l<br><       | μg/l            | μg/l              | μg/l           | μg/l        |
|                    |                      |                                       | <               | 0,005           | 0,016             | 0,031          | 0,017       |
| PCB 180            | PCB 77               | PCB 105                               | PCB 118         | PCB 126         | PCB 169           | PCB 189        |             |
| μg/l               | μg/l                 | μg/l                                  | μg/l            | μg/l            | μg/l              | μg/l           |             |
| 0,002              | <                    | <                                     | <               | <               | <                 | <              |             |
| Naphthalin         | Acenaphthylen        | Acenaphten                            | Fluoren         | Phenanthren     | Anthracen         | Fluoranthen    | Pyren       |
| μg/l               | μg/l                 | μg/l                                  | μg/l            | μg/l            | μg/l              | μg/l           | μg/l        |
| n.b.               | <                    | 0,006                                 | 0,006           | 0,01            | <                 | 0,006          | 0,005       |
| Benzo(a)-          | Chrysen              | Benzo(b)-                             | Benzo(k)-       | Benzo(a)-       | Indeno(1,2,3-cd)- | Dibenz(a,h)-   | Benzo(q,h,i |
| anthracen          | Omysen               | fluoranthen                           | fluoranthen     | pyren           | pyren             | anthracen      | perylen     |
| μg/l               | μg/l                 | μg/l                                  | μg/l            | μg/l            | μg/l              | μg/l           | μg/l        |
| <                  | <                    | <                                     | <               | <               | <                 | <              | <           |
| Dinhanul           | Benzol               | Toluol                                | Ethydhanad      | m /n Vulal      | a Vulai           | Dichlor-       | 1,1-        |
| Biphenyl           | Delizoi              | loluoi                                | Ethylbenzol     | m-/p-Xylol      | o-Xylol           | methan         | Dichlorethe |
| µg/l               | μg/l                 | μg/l                                  | μg/l            | μg/l            | μg/l              | methan<br>µg/l | µg/l        |
| n.b.               | μg/i<br><            | μ <u>υ</u> γ/ι<br><                   | 5,98            | μg/i<br>14      | μ <u>γ</u> γ/1    | μg/i<br><      | μg/i<br><   |
| 11.0.              |                      | · · · · · · · · · · · · · · · · · · · | 0,00            |                 |                   | ·              |             |
| cis-1,2-           | trans-1,2-           | Trichlor-                             | 1,1,1-          | Tetrachlor-     | 1,2-Dichlorethan  | Trichlorethen  | Bromdichlo  |
| Dichlorethen       | Dichlorethen         | methan                                | Trichlorethan   | methan          |                   |                | methan      |
| μg/l               | μg/l                 | μg/l                                  | μg/l            | μg/l            | μg/l              | μg/l           | μg/l        |
| <                  | <                    | <                                     | <               | <               | <                 | <              | <           |
| 1,1,2-             | Tetrachlorethen      | Dibromchlor-                          | Tribrom-        | 1,2-            | 1,3-Dichlorbenzol | 1,4-           | KW-Index    |
| Trichlorethan      |                      | methan                                | methan          | Dichlorbenzol   |                   | Dichlorbenzol  | (H53)       |
| μg/l               | μg/l                 | μg/l                                  | μg/l            | μg/l            | μg/l              | μg/l           | mg/l        |
| μg/i               | μg/i                 | μg/i                                  | μ9/1            | μg/i            | μg/ι              | μg/ι           | 1119/1      |

|                                         |                                         |                   | Datenblatt Pr | obe Nr. 30            |             |                     |             |
|-----------------------------------------|-----------------------------------------|-------------------|---------------|-----------------------|-------------|---------------------|-------------|
| bfälle aus der che                      | emischen Oberfläc                       | henbearbeitung ui | Ifd Nr.       | EAV                   | Datum       |                     |             |
| letallen und ande<br>ährliche Stoffe en | ren Werkstoffen -                       | Schlämme und Fil  | 30            | 110109                | 27.01.2003  |                     |             |
| arriiche Stone en                       | uraneri.                                | Chemiso           | he Charakter  | isierung - Fe         | eststoff    |                     |             |
| Arsen                                   | Blei                                    | Cadmium           | Chrom         | Kupfer                | Nickel      | Quecksilber         | Zink        |
| mg/kg                                   | mg/kg                                   | mg/kg             | mg/kg         | mg/kg                 | mg/kg       | mg/kg               | mg/kg       |
| 24                                      | 57000                                   | 0,05              | 136000        | 108                   | 2500        | <0,05               | 168         |
| Kohlenwasserstoffe                      |                                         | lipophile Stoffe  | TOC           | Benzol                | Toluol      | Ethylbenzol         | Xylol       |
| GEW.%                                   |                                         | Gew.%             | Gew.%         | mg/kg                 | mg/kg       | mg/kg               | mg/kg       |
| 0,07                                    |                                         | 0,09              | n.b.          | <0,01                 | <0,01       | 0,3                 | 1,7         |
| Summe BTEX                              | Naphthalin                              | Acenaphten        | Acenaphtylen  | Fluoren               | Phenanthren | Anthracen           | Fluoranther |
| mg/kg                                   | mg/kg                                   | mg/kg             | mg/kg         | mg/kg                 | mg/kg       | mg/kg               | mg/kg       |
| 2                                       | <0,1                                    | <0,1              | <0,1          | <0,1                  | <0,1        | <0,1                | <0,1        |
| Down (a) and house in                   |                                         |                   | Charan        | Benzo(b)fluoranthen   |             | Benzo(k)fluoranthen |             |
| Pyren                                   | Benz(a)anthracen                        |                   | Chrysen       | , ,                   |             | ` '                 |             |
| mg/kg<br><0.1                           | mg/kg                                   |                   | mg/kg<br><0.1 | mg/kg<br><0.1         |             | mg/kg<br><0.1       |             |
|                                         | <0,1 <0,1 Oibenz(ah)anthracen Benzo(ghi |                   |               | Indeno(1,2,3-cd)pyren |             | Benzo(a)pyren       | AOX         |
| mg/kg                                   |                                         | mg/kg             |               | mg/kg                 |             | mg/kg               | mg/kg       |
| <Ŏ,1                                    |                                         | <Ŏ,1Ĭ             |               | <0,1                  |             | <0,1                | n.b.        |
| Wasserlösl                              | icher Anteil                            | Summe PA          | K (16 EPA)    | Chrom VI              | 1           |                     |             |
| Gew.%                                   |                                         | mg/kg             |               | mg/kg                 |             |                     |             |
| 6,9                                     |                                         | <1                |               | 82000                 |             |                     |             |

# <u>Bemerkungen</u>

bleichromat-haltiger Schlamm, orange, pastös-fest; bei pH-Einstellung Ausfällungen trüb-olivebraun mit gelben Schaum; für pH-Einstellung (pH=7) ca. 20 NaOH-Plätzchen für 1 l benötigt; Ausfällungen glasfaserfiltriert;



# Bestimmungsgrenzen

| Parameter              | Bestimmungsgrenze | Parameter      | Bestimmungsgrenze | Parameter                     | Bestimmungsgrenze |
|------------------------|-------------------|----------------|-------------------|-------------------------------|-------------------|
| Feststoff-Analytik     |                   | Eluat-Analytik |                   | Eluat-Analytik                |                   |
| Arsen                  | 0,1 mg/kg         | DOC            | 0,3 mg/l          | Naphthalin                    | 0,002 μg/l        |
| Blei                   | 0,5 mg/kg         | NH4            | 0,02 mg/l         | Acenaphthylen                 | 0,002 μg/l        |
| Cadmium                | 0,01 mg/kg        | Cd ICP-MS      | 0,1 μg/l          | Acenaphten                    | 0,002 μg/l        |
| Chrom                  | 0,5 mg/kg         | Cr ICP-MS      | 0,5 μg/l          | Fluoren                       | 0,002µg/l         |
| Kupfer                 | 0,5 mg/kg         | Ni ICP-MS      | 0,5 μg/l          | Phenanthren                   | 0,002 μg/l        |
| Nickel                 | 0,5 mg/kg         | Cu ICP-MS      | 0,5µg/l           | Anthracen                     | 0,002 μg/l        |
| Quecksilber            | 0,05 mg/kg        | Pb ICP-MS      | 0,5 μg/l          | Fluoranthen                   | 0,002 μg/l        |
| Zink                   | 0,1 mg/kg         | Zn ICP-MS      | 10 μg/l           | Pyren                         | 0,002 μg/l        |
| AOX                    | 1 mg/kg           | Mn ICP-MS      | 5 μg/l            | Benzo(a)anthracen             | 0,002 μg/l        |
| Kohlenwasserstoffe     | 0,002 Gew. %      | As ICP-MS      | 0,5 μg/l          | Chrysen                       | 0,002 μg/l        |
| lipophile Stoffe       | 0,01 Gew. %       | Co ICP-MS      | 0,5 μg/l          | Benzo(b)fluoranthen           | 0,002 μg/l        |
| TOC                    | 0,1 Gew. %        | PCB 8          | 0,002 μg/l        | Benzo(k)fluoranthen           | 0,002µg/l         |
| Benzol                 | 0,01 mg/kg        | HCH            | 0,002 μg/l        | Benzo(a)pyren                 | 0,002 μg/l        |
| Toluol                 | 0,01 mg/kg        | PCB 18         | 0,002 μg/l        | Indeno(1,2,3-cd)pyren         | 0,002 μg/l        |
| Ethylbenzol            | 0,01 mg/kg        | PCB 28         | 0,002 μg/l        | Dibenz(a,h)anthracen          | 0,002 μg/l        |
| Xylol                  | 0,01 mg/kg        | PCB 52         | 0,002 μg/l        | Benzo(g,h,i)perylen           | 0,002 μg/l        |
| Summe BTEX             | 0,04 mg/kg        | PCB 101        | 0,002 μg/l        | Biphenyl                      | 0,002 μg/l        |
| Naphthalin             | 0,1 mg/kg         | PCB 138        | 0,002 μg/l        | Benzol                        | 3 μg/l            |
| Acenaphten             | 0,1 mg/kg         | PCB 153        | 0,002 μg/l        | Toluol                        | 3 μg/l            |
| Acenaphtylen           | 0,1 mg/kg         | PCB 180        | 0,002 μg/l        | Ethylbenzol                   | 3 μg/l            |
| Fluoren                | 0,1 mg/kg         | PCB 77         | 0,002µg/l         | m-/p-Xylol                    | 3 μg/l            |
| Phenanthren            | 0,1 mg/kg         | PCB 105        | 0,002µg/l         | o-Xylol                       | 3 μg/l            |
| Anthracen              | 0,1 mg/kg         | PCB 118        | 0,002 μg/l        | Dichlormethan                 | 3 μg/l            |
| Fluoranthen            | 0,1 mg/kg         | PCB 126        | 0,002µg/l         | 1,1-Dichlorethen              | 0,05 μg/l         |
| Pyren                  | 0,1 mg/kg         | PCB 169        | 0,002 μg/l        | cis-1,2-Dichlorethen          | 0,25μg/l          |
| Benz(a)anthracen       | 0,1 mg/kg         | PCB 189        | 0,002µg/l         | trans-1,2-Dichlorethen        | 0,25μg/l          |
| Chrysen                | 0,1 mg/kg         |                |                   | Trichlormethan                | 0,01µg/l          |
| Benzo(b)fluoranthen    | 0,1 mg/kg         |                |                   | 1,1,1-Trichlorethan           | 0,01 μg/l         |
| Benzo(k)fluoranthen    | 0,1 mg/kg         |                |                   | Tetrachlormethan              | 0,01 μg/l         |
| Benzo(a)pyren          | 0,1 mg/kg         |                |                   | 1,2-Dichlorethan              | 0,1 µg/l          |
| Dibenz(ah)anthracen    | 0,1 mg/kg         |                |                   | Trichlorethen                 | 0,01 μg/l         |
| Benzo(ghi)perylen      | 0,1 mg/kg         |                |                   | Bromdichlormethan             | 0,01 μg/l         |
| Indeno(1,2,3-cd)pyren  | 0,1 mg/kg         |                |                   | 1,1,2-Trichlorethan           | 0,01 μg/l         |
| Summe PAK (16 EPA)     | 1 mg/kg           |                |                   | Tetrachlorethen               | 0,01 μg/l         |
| Wasserlöslicher Anteil | 0,1 Gew. %        |                |                   | Dibromchlormethan             | 0,01 μg/l         |
|                        |                   |                |                   | Tribrommethan                 | 0,01µg/l          |
|                        |                   |                |                   | 1,2-Dichlorbenzol             | 0,1 μg/l          |
|                        |                   |                |                   | 1,3-Dichlorbenzol             | 0,1 μg/l          |
|                        |                   |                |                   | 1,4-Dichlorbenzol             | 0,1 μg/l          |
|                        |                   |                |                   | KW-Index (H53)                | 0,1 mg/l          |
| _                      |                   |                |                   | AOX (Eluat nach DIN 38414-S4) | 0,01 mg/l         |